How do tics develop?
Neural network responsible for tic generation
Date:
January 20, 2022
Source:
Charite' - Universita"tsmedizin Berlin
Summary:
A team of researchers has identified a neural network which
is responsible for generating tic disorders. Targeting of this
network via deep brain stimulation delivered by a pacemaker-like
device has resulted in the alleviation of symptoms in people with
Tourette syndrome. The researchers' findings could serve as a basis
for improving the treatment of people with severe tic disorders.
FULL STORY ==========================================================================
A team of researchers from Charite' -- Universita"tsmedizin Berlin
has identified a neural network which is responsible for generating
tic disorders.
Targeting of this network via deep brain stimulation delivered by a
pacemaker- like device has resulted in the alleviation of symptoms in
people with Tourette syndrome. The researchers' findings, which have been published in Brain, could serve as a basis for improving the treatment
of people with severe tic disorders.
==========================================================================
Tics usually manifest as fast movements or sounds which occur suddenly,
in quick succession, and without any obvious contextual embedment. Motor
tics include rapid eye blinking or head jerking; vocal tics include throat clearing and whistling. Tic disorders are often associated with additional behavioral symptoms such as anxiety, obsessive-compulsive disorders, ADHD
and depression, and can therefore often lead to social isolation. One of
the most widely known tic disorders is Tourette syndrome, which describes individuals who have both motor and vocal tics. Tics usually first appear during childhood. Estimates suggest that up to four percent of children
are affected by tics and that approximately one percent of children meet
the diagnostic criteria for Tourette syndrome. In many (but not all)
cases, symptoms become milder as children reach adulthood.
Little is known about the way in which tics are generated inside the
brain.
"Over the past few years, neuroscientists have identified a number of
different areas in the brain which are involved in tic generation,"
says last author Dr.
Andreas Horn, who leads an Emmy Noether Junior Research Group dedicated
to the study of network-based brain stimulation. This Group is located
at the Department of Neurology with Experimental Neurology on Campus
Charite' Mitte, with additional sites at Massachusetts General Hospital
and Brigham and Women's Hospital, two hospitals associated with Harvard
Medical School. He explains: "Despite these recent breakthroughs, however,
some important questions have remained unanswered. Which of these brain
regions are responsible for generating tics? Which of them become active
in order to compensate for faulty processes? We have now been able to show
that it is not a single brain region which is responsible for generating
tics. Rather, tics are caused by a network comprising different areas
of the brain." The team of researchers started by consulting published
case reports on patients with an extremely rare cause of tic disorder:
brain injury following conditions such as stroke or trauma. In these individuals, the tics observed are the direct result of lesions within a specific area of the brain. Having identified at total of 22 such cases in
the literature, the researchers then produced a detailed map of the brain
areas containing the lesions and any other areas of the brain normally connected to them via nerve fibers. For this 'connectivity analysis', the researchers used a map describing the connectivity patterns found within
the average human brain. This map was the result of years of development
work conducted by the Department of Neurology with Experimental Neurology
in collaboration with Harvard Medical School and was based on the brain
scans of more than 1,000 healthy individuals.
The researchers were able to show that nearly all of the patients'
brain lesions -- irrespective of their precise location within the brain
-- formed part of a common neural network comprising a wide range of
areas, including the insular cortex, cingulate gyrus, striatum, globus
pallidus internus, thalamus, and cerebellum. One of the study's first
authors, Bassam Al-Fatly of the Department of Neurology with Experimental Neurology, explains: "These structures are distributed almost across the
entire brain and have a wide range of functions, from motor control to
the processing of emotions. They have all been discussed as potential
causes for tics in the past but, until now, we had no clear evidence
available and no knowledge of a direct link between these structures. We
now know that these brain regions form a network and that they may in
fact cause tic disorders." The fact that this newly identified neural
network is also of relevance to the treatment of 'classic' tics was demonstrated by analyzing data on 30 patients with Tourette syndrome,
each of whom had received pacemaker-like devices whose electrodes had
been placed in different areas of the brain. This type of deep brain stimulation (DBS) is currently only used in particularly severe cases,
where behavioral interventions and medication have failed to achieve
adequate results. For each of the 30 Tourette patients, the Berlin-based
team of researchers determined the precise locations of the DBS device's electrodes within the brain and whether they had been stimulating the tic-inducing neural network. Symptom improvement was found to be most pronounced in individuals whose electrodes produced the greatest degree
of stimulation of the tic- inducing network.
"The benefit for people with severe tic disorders appears to be greatest
when deep brain stimulation targets the tic-inducing network," says the
study's first author, PD Dr. Christos Ganos, senior physician in charge
of the Tic Disorders Outpatient Unit at the Department of Neurology with Experimental Neurology. Emphasizing the significance of the research,
PD Dr. Ganos, who holds a Freigeist Fellowship from the Volkswagen
Foundation, says: "By taking the tic-inducing network into account
when placing brain-stimulating devices, we will ensure that these
findings inform the ways in which we treat our patients. We hope that
this will enable us to better alleviate the burden of those affected,
enabling them to lead largely independent and socially active lives."
special promotion Explore the latest scientific research on sleep and
dreams in this free online course from New Scientist -- Sign_up_now_>>> academy.newscientist.com/courses/science-of-sleep-and-dreams ========================================================================== Story Source: Materials provided by
Charite'_-_Universita"tsmedizin_Berlin. Note: Content may be edited for
style and length.
========================================================================== Journal Reference:
1. Christos Ganos, Bassam Al-Fatly, Jan-Frederik Fischer, Juan-Carlos
Baldermann, Christina Hennen, Veerle Visser-Vandewalle, Clemens
Neudorfer, Davide Martino, Jing Li, Tim Bouwens, Linda Ackermanns,
Albert F. G. Leentjens, Nadya Pyatigorskaya, Yulia Worbe,
Michael D. Fox, Andrea A Ku"hn, Andreas Horn. A neural network
for tics: insights from causal brain lesions and deep brain
stimulation. Brain, 2022; DOI: 10.1093/ brain/awac009 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2022/01/220120103406.htm
--- up 6 weeks, 5 days, 7 hours, 13 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)