• Mapping the quantum future with smart TV

    From ScienceDaily@1:317/3 to All on Mon Feb 14 21:30:48 2022
    Mapping the quantum future with smart TV technology

    Date:
    February 14, 2022
    Source:
    ARC Centre of Excellence in Exciton Science
    Summary:
    Scientists have created the first ever 2D map of the Overhauser
    field in organic LEDs, shedding light on the challenges we face
    in designing accurate quantum-based technologies.



    FULL STORY ========================================================================== Scientists have created the first ever 2D map of the Overhauser field
    in organic LEDs, shedding light on the challenges we face in designing
    accurate quantum-based technologies

    ========================================================================== Television used to be known as 'the idiot box'. But the organic LEDs
    found in modern flat screens are far from stupid.

    In fact, they're helping us to draw a map that could unlock the quantum
    future.

    No wonder they're now called smart TVs.

    The emerging concept of quantum sensing has the potential to surpass
    existing technology in areas ranging from electronics and magnetic field detection to microscopy, global positioning systems and seismology.

    By taking advantage of quantum mechanics, new devices could be designed
    with unprecedented sensitivity and functionality.

    But for this to happen, greater understanding is required of the role
    played by spin, a fundamental quantum property of subatomic particles
    such as electrons.



    ==========================================================================
    The spin of an electron can interact with other spins nearby via a
    process called the hyperfine interaction.

    In organic electronic materials, like those used in OLED displays,
    a single electron will interact with the magnetic fields produced by
    the many nuclear spins which are part of the molecule it sits on. The cumulative effect is the Overhauser field.

    Until now, a single value has been used to describe the strength of the Overhauser field in a device.

    That approach is blind to local spin variations and fails to reflect
    its true complexity, leading to uncertainty about how to reproduce and miniaturise devices that are reliant on spin behaviour.

    Seeking to address this uncertainty, researchers at the ARC Centre of Excellence in Exciton Science have created the first ever 2D map showing
    the Overhauser field at work in OLEDs.



    ==========================================================================
    The team, based at UNSW Sydney, were able to achieve this by
    imaging the microscopic changes in an OLED's magnetically-enhanced
    brightness through the use of large magnetic fields, an effect known
    as magneto-electroluminescence.

    They managed to resolve these variations down to the micrometer scale
    (one thousandth of a millimeter or 0.001 mm) and were able to map out
    the spatial distribution of the Overhauser field strength.

    Their results showed that this critical spin property varied by at least
    30% within a stable and widely used polymer OLED (SY-PPV), and by nearly
    60% in a small-molecule fluorescent-based device (Alq3).

    "These results show the considerable challenges that will have to be
    overcome in future attempts to reliably miniaturise organic-based sensing technologies for practical applications," said Professor Dane McCamey,
    who leads the research team at UNSW.

    The paper's first author Billy Pappas, a PhD student at UNSW Sydney,
    said: "The miniaturisation of organic devices is an important milestone
    in being able to integrate them into functional quantum technologies,
    which then allows them to be effectively upscaled for industrial and
    commercial applications.

    "But if there's a large variation of properties within a device, which
    is what we observed, then the smaller you make them, the larger the
    impact this variation will have on your ability to reproduce a device
    which behaves in the same way.

    "If you've got a 30% variation, and you make two small devices, they will
    look the same, but they could behave very differently. If you want to use
    them for sensing or logic, you're not going to get the same results out
    of two otherwise identical devices because of this intrinsic variation."
    It was also shown that the Overhauser field effect is 'spatially
    correlated' (arranged in a pattern) at lengths of up to approximately
    seven micrometres.

    This opens the possibility of fabricating devices at a length scale
    where this spin property is highly uniform.

    While that's useful information for future attempts to make
    spin-consistent devices, there's a catch -- the Overhauser field is
    only spatially correlated for a certain period of time before changing
    its distribution.

    "We have noticed that there's a temporal component," Billy said.

    "So if you zoom in and sit at one particular region and repeat these measurements, you'll see clusters, but they're actually evolving over
    time, effectively modifying their spatial distributions.

    "These changes occur over a minute or two, so it's very tricky to pin
    them down." The next step for the researchers is to cool their OLEDs down
    to very low temperatures using a cryostat to remove thermal fluctuations, before employing a technique called optically detected magnetic resonance (ODMR) to measure even more accurate spatiotemporal fluctuations in
    these spin properties.

    Prof. McCamey notes that "although this work highlights some of the
    issues that need to be addressed to produce devices repeatably, it's
    also incredible that the technology used in commercial OLED displays
    can be used to probe these subtle quantum effects at room temperature." ========================================================================== Story Source: Materials provided by ARC_Centre_of_Excellence_in_Exciton_Science. Note: Content may be edited
    for style and length.


    ========================================================================== Journal Reference:
    1. William J. Pappas, Rugang Geng, Adrian Mena, Alexander
    J. Baldacchino,
    Amir Asadpoordarvish, Dane R. McCamey. Resolving the Spatial
    Variation and Correlation of Hyperfine Spin Properties in Organic
    Light‐Emitting Diodes. Advanced Materials, 2022; 2104186 DOI:
    10.1002/adma.202104186 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220214111810.htm

    --- up 10 weeks, 2 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)