• JET fusion facility sets a new world ene

    From ScienceDaily@1:317/3 to All on Thu Feb 10 21:30:42 2022
    JET fusion facility sets a new world energy record
    European joint experiment prepares transition to large-scale ITER project


    Date:
    February 10, 2022
    Source:
    Max-Planck-Institut fu"r Plasmaphysik (IPP)
    Summary:
    European scientists have achieved a major success on the road to
    energy production through fusion plasmas: They produced stable
    plasmas with 59 megajoules of energy output at the world's largest
    fusion facility, JET, in Culham near Oxford, UK.



    FULL STORY ========================================================================== European scientists have achieved a major success on the road to energy production through fusion plasmas: They produced stable plasmas with 59 megajoules of energy output at the world's largest fusion facility, JET,
    in Culham near Oxford, UK. The team, which also includes researchers
    from the Max Planck Institute for Plasma Physics (IPP), used the fuel
    of future fusion power plants. These were the first experiments of their
    kind in the world in more than 20 years.


    ========================================================================== Following the example of the sun, fusion power plants aim to fuse the
    hydrogen isotopes deuterium and tritium and release large amounts of
    energy in the process. The only plant in the world currently capable of operating with such fuel is the European joint project JET, the Joint
    European Torus in Culham near Oxford, UK. However, the last experiments
    with the fuel for future fusion power plants were conducted there in
    1997. Because tritium is a very rare raw material that also poses special handling challenges, research teams usually use hydrogen or deuterium
    for plasma experiments. In future power plants, tritium will be formed
    from lithium during energy production.

    Experiments with deuterium-tritium mixtures in preparation for ITER
    "We can explore the physics in fusion plasmas very well by working with hydrogen or deuterium, so this is the standard worldwide," explains
    IPP's Dr.

    Athina Kappatou, who with her IPP colleagues Dr. Philip Schneider and
    Dr. Jo"rg Hobirk led significant parts of the European collaborative experiments at JET." However, for the transition to the international, large-scale, fusion experiment ITER, it is important that we prepare for
    the conditions prevailing there." ITER is currently under construction
    in Cadarache, in southern France, and is expected to be able to release
    ten times as much energy as is fed into the plasma in terms of heating
    energy, using deuterium-tritium fuel.

    To bring the JET experiment as close as possible to future ITER
    conditions, the previous carbon lining of the plasma vessel was replaced
    by a mixture of beryllium and tungsten, as is also planned for ITER,
    between 2009 and 2011. The metal tungsten is more resistant than carbon,
    which, moreover, stores too much hydrogen. However, the now metallic
    wall places new demands on the quality of the plasma control. The current experiments demonstrate the successes of the researchers: At temperatures
    ten times higher than those at the center of the sun, record levels of generated fusion energy have been achieved.

    World record under ITER-like conditions Prior to the change of the wall material, JET had set the world energy record in 1997 with a plasma that produced 22 megajoules of energy. This record stood until now. "In the
    latest experiments, we wanted to prove that we could create significantly
    more energy even under ITER-like conditions," explains IPP physicist
    Dr. Kappatou. Several hundred scientists and researchers were involved
    in years of preparation for the experiments. They used theoretical
    methods to calculate in advance the parameters they needed to obtain
    to generate the plasma in order to achieve their goals. The experiments confirmed the predictions in late 2021 and delivered a new world record:
    JET produced stable plasmas with deuterium-tritium fuel that released
    59 megajoules of energy.



    ==========================================================================
    To produce net energy -- that is, to release more energy than the
    heatering systems provide -- the experimental facility is too small. This
    will not be possible until the larger-scale ITER experiment in southern
    France comes online. "The latest experiments at JET are an important
    step toward ITER," concludes Prof. Sibylle Gu"nter, Scientific Director
    of the Max Planck Institute for Plasma Physics. "What we have learned
    in the past months will make it easier for us to plan experiments with
    fusion plasmas that generate much more energy than is needed to heat
    them." Background information: Megawatts vs. Megajoules In the recent record-breaking experiment, the fusion reactions in JET released a total
    of 59 megajoules of energy in the form of neutrons during a five-second
    phase of a plasma discharge. Expressed in units of power (energy per
    time), JET achieved a power output of just over 11 megawatts averaged
    over five seconds.

    The previous energy record, set in 1997, was just under 22 megajoules
    of total energy and 4.4 megawatts of power averaged over five seconds.

    About JET JET was jointly designed and built by the members of the
    European fusion program EUROfusion and has been jointly operated since
    1983. The English fusion center "Culham Centre for Fusion Energy" in
    Culham near Oxford is responsible for the technical operations, while temporarily seconded researchers and technicians from the EUROfusion laboratories work on the facility on a campaign basis. With numerous secondments, IPP is an important participant in the JET program.

    About Max Planck Institute for Plasma Physics The research conducted at
    the Max Planck Institute for Plasma Physics (IPP) in Germany (locations: Garching near Munich and Greifswald) is concerned with investigating
    the physical basis of a fusion power plant. Like the sun, such a plant
    aims to generate energy from fusion of atomic nuclei. IPP's research is
    part of the European fusion program. With its workforce of approximately
    1,100 IPP is one of the largest fusion research centers in Europe.

    ========================================================================== Story Source: Materials provided by Max-Planck-Institut_fu"r_Plasmaphysik_(IPP). Note: Content may be edited
    for style and length.


    ==========================================================================


    Link to news story: https://www.sciencedaily.com/releases/2022/02/220210085048.htm

    --- up 9 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)