• Scientists test promising biosensor aime

    From ScienceDaily@1:317/3 to All on Thu Feb 3 21:30:42 2022
    Scientists test promising biosensor aimed for use in brain
    Lab study shows potential of device for monitoring health

    Date:
    February 3, 2022
    Source:
    Ohio State University
    Summary:
    Scientists have successfully tested in the lab a tiny biosensor
    they developed that can detect biomarkers tied to traumatic brain
    injuries.



    FULL STORY ========================================================================== Scientists have successfully tested in the lab a tiny biosensor they
    developed that can detect biomarkers tied to traumatic brain injuries.


    ==========================================================================
    In a study published recently in the journal Small, the Ohio State
    University researchers say their waterproof biosensor includes an "unprecedented combination of features" that may allow it to detect
    changes in the concentrations of various chemicals in the body and send
    the results to researchers in real time.

    The chip is flexible and thinner than a human hair, making it minimally invasive for use in the brain.

    "We have a long way to go from our tests in the lab, but these findings
    were very encouraging," said study co-author Jinghua Li, assistant
    professor of materials science and engineering at Ohio State.

    Although a biosensor such as the one the team developed could have many potential uses, Li and her co-authors were particularly focused in this
    study on how the sensor could be used to monitor patients with traumatic
    brain injuries (TBI).

    After such an injury, secondary damage can occur that can be detected
    by changes in sodium and potassium ion concentrations in the brain's cerebrospinal fluid, said Li, who is a member of Ohio State's Chronic
    Brain Injury (CBI) Program.



    ==========================================================================
    "We want a biosensor that is able to continuously monitor brain tissues to detect changes in ion concentrations in the cerebrospinal spinal fluid,"
    she said.

    "Those changes emerge at the secondary state of TBI as an early warning
    signal of the condition worsening." The researchers tested the biosensor
    in an artificial solution they created to mimic cerebrospinal fluid and
    found that it could accurately detect changes in potassium and sodium
    ion levels that are important in TBI.

    In addition to the tests with the artificial cerebrospinal fluid,
    the team also tested the biosensor in human blood serum, in which they successfully monitored pH levels.

    How does it work? The chip features electronic components (known as field- effect transistors) that, upon sensing the chemical of interest, produce
    an electrical signal that can be detected and analyzed outside the body.



    ========================================================================== Importantly, the researchers developed calibration standards that address
    what is called the "crosstalk" issue.

    "When we create a biochemical sensor, we want to make sure that the device
    only responds to the specific chemicals we are interested in, and ignores
    the crosstalk from other biomarkers," Li said. "That is difficult to do
    in a complex system like our body." While a biosensor has to be able
    to detect changes in the fluids in the brain, the electronics in the
    chip must be protected from these same fluids, Li said.

    A waterproof encapsulation made from a thin film of silicon dioxide --
    forged in temperatures above 1,000 degrees Celsius -- provided high
    structural integrity as barrier materials in a fluid environment, the
    study found.

    How long could the encapsulation last in a human body? The researchers
    tested the material in a variety of ways, such as by placing it in heated fluids and in substances with different pH levels.

    The findings suggest the waterproof encapsulation with a thickness of
    several hundreds of nanometers could last at least a few years at body temperature and possibly much longer, Li said.

    The biggest issue right now is with the chemical sensing elements,
    which the study suggests would work for only up to a few weeks.

    And there are other issues that need to be worked out before the
    biosensor is ready to be tested in animal models and humans, Li said. The response of biotissues to the sensor over extended period needs further
    study. There are still issues with crosstalk to be resolved, considering
    the complexity of the biosystem, and questions of how to mass produce
    the sensors, among other matters.

    But this study provides more evidence that these sensors have a real
    future in health care, she said.

    Li said she believes biosensors could be used to analyze not only
    ions and neurotransmitters, as in this study, but possibly peptides,
    proteins, nucleotide acids and other chemicals in the body. It could be
    a breakthrough not only for TBI, but for other chronic diseases such as Parkinson's and Alzheimer's disease.

    "We believe that the capture and analysis of health data that we could
    achieve with biosensors are crucial to tracking long-lasting health
    conditions for early intervention and treatment of diseases," she said.

    Li conducted the study with Yan Dong, a postdoctoral researcher, and
    graduate students Shulin Chen and Tzu-Li Liu, all in materials science
    and engineering at Ohio State.

    The work was supported by the National Center for Advancing Translational Sciences, part of the National Institutes of Health. It was also
    supported by Ohio State's CBI program and Ohio State's Center for
    Emergent Materials, which is a National Science Foundation Materials
    Research Science and Engineering Center.

    special promotion Explore the latest scientific research on sleep and
    dreams in this free online course from New Scientist -- Sign_up_now_>>> ========================================================================== Story Source: Materials provided by Ohio_State_University. Original
    written by Jeff Grabmeier. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. Yan Dong, Shulin Chen, Tzu‐Li Liu, Jinghua Li. Materials and
    Interface Designs of Waterproof Field‐Effect Transistor
    Arrays for Detection of Neurological Biomarkers. Small, 2022;
    2106866 DOI: 10.1002/ smll.202106866 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220203083627.htm

    --- up 8 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)