• A new way to store sustainable energy: '

    From ScienceDaily@1:317/3 to All on Tue Feb 1 21:30:40 2022
    A new way to store sustainable energy: 'Information batteries'

    Date:
    February 1, 2022
    Source:
    University of Southern California
    Summary:
    A future powered by sustainable energy sources could save the
    world from devastating climate change and reduce energy bills. But
    renewable energy has an intermittency problem -- the sun provides
    no power at night, while winds can stop suddenly. Better battery
    storage -- a holy grail for scientists worldwide -- is considered
    key to solving the intermittency problem by storing energy when
    the wind and sun are strong. But current storage solutions,
    including lithium-ion batteries and pumped hydro, are expensive
    and challenging to scale. What if surplus renewable energy could
    be stored as computation instead?


    FULL STORY ==========================================================================
    A future powered by sustainable energy sources could save the world from devastating climate change and reduce energy bills. But renewable energy
    has an intermittency problem -- the sun provides no power at night,
    while winds can stop suddenly.


    ==========================================================================
    In addition, power grids must keep supply and demand in balance or risk
    surges and blackouts. As a result, renewable energy is dumped during
    times of excess production, while at other times, power plants burn
    fossil fuels to meet grid shortfalls.

    "The way things are going, in five years, the amount of renewable power
    wasted in California each year will be equivalent to the amount of power
    L.A. uses each year," said Barath Raghavan, an assistant professor in
    computer science at the USC Viterbi School of Engineering.

    Better battery storage -- a holy grail for scientists worldwide -- is considered key to solving the intermittency problem by storing energy when
    the wind and sun are strong. But current storage solutions, including lithium-ion batteries and pumped hydro, are expensive and challenging
    to scale.

    What if surplus renewable energy could be stored as computation
    instead? That's the thinking behind "information batteries," a new system proposed by Raghavan and Jennifer Switzer, a Ph.D. student from UC San
    Diego, published recently in theACM Energy Informatics Review.

    Predicting possible computations The basic idea for information batteries
    is simple: When renewable energy is available in excess, it is used
    to speculatively perform computations in large, energy-intensive data
    centers. These data centers -- from Google and Facebook to Hollywood movie rendering -- consume 10 to 50 times the energy of a typical commercial building, according to the Office of Energy Efficiency and Renewable
    Energy. The stored computed results can then be used later when green
    energy is less plentiful.



    ==========================================================================
    "We had the observation that if we can predict possible computations
    that might occur in the future, we can do those computations now,
    while there is energy available, and store the results, which now have
    embodied energy," said Raghavan, whose research focuses on systems and sustainability.

    For instance, every day, YouTube data centers transcode more than 700,000
    hours of videos to different resolutions. Many of these computations are predictable and can be performed at a time when there is excess green
    energy. At this point, the data is stored on servers for later use,
    when there is less renewable energy available on the grid -- essentially
    moving electricity consumption from one time period to another.

    So, how does this work like a battery? In the scientific sense, said
    Raghavan, batteries are stores of potential energy to do useful work, electrical or otherwise. Most storage of energy into batteries converts
    one type of energy into another kind of potential energy, for instance, electrical into gravitational. In this case, information provides energy
    in the same way as a battery because electrical energy is turned into
    what might be called "informational potential energy." In addition to
    taking advantage of task predictability, the system is also flexible:
    the computations that are completed in advance do not need to match
    exactly with the computations completed at a later time.

    "We support pre-computing many fragments of computation and then later
    can pick and choose small pieces of computation done before, like puzzle pieces, and assemble them together to quickly compute a totally new computational task," said Raghavan.



    ==========================================================================
    For certain types of workloads, said Raghavan, the information battery
    system offers better efficiency than lithium-ion batteries. The specific efficiency depends on multiple factors, such as the types of computation conducted and the predictability of power. But unlike lithium-ion
    batteries, storing data is cost-effective in terms of both money and
    energy. This could help to reduce reliance on fossil fuels, which are responsible for three-quarters of global greenhouse gas emissions.

    A promising future alternative While the idea itself is relatively simple,
    the challenge, said the researchers, is determining what computation to perform, where and when, and how these computations should be done to efficiently retrieve the results later.

    In the paper, titled "Information Batteries: Storing Opportunity Power
    with Speculative Execution," Raghavan and Switzer provide a design and
    proof of concept implementation of the zero-carbon system, which includes recurrent neural networks for predicting the future availability of
    renewable energy and upcoming tasks in data centers.

    It also includes a cache where functions are stored and a modified
    compiler to automatically modify code to store and retrieve results. The infrastructure would be geographically distributed, comprising many small, distributed data centers, each located in a region of the country where
    wind or solar production is known to be high.

    "With this system, companies would be using power that would have been
    dumped, and everybody else benefits because the grid operator doesn't
    have to spin up natural gas power in the evening hours to compensate
    for demand," said Raghavan.

    There are certain limitations, which the researchers explore in the
    study: for instance, it is only possible in some workloads and in some contexts. But Raghavan believes with improved prediction and integration
    into large systems, the technology points towards a promising future alternative for storing green energy. "In the civilization-scale challenge
    of sustainability," said Raghavan, "we need every tool we can get." ========================================================================== Story Source: Materials provided by
    University_of_Southern_California. Original written by Caitlin
    Dawson. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Jennifer Switzer, Barath Raghavan. Information batteries: storing
    opportunity power with speculative execution. ACM SIGEnergy Energy
    Informatics Review, 2021; 1 (1): 1 DOI: 10.1145/3508467.3508468 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220201115247.htm

    --- up 8 weeks, 3 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)