• Stackable artificial leaf uses less powe

    From ScienceDaily@1:317/3 to All on Thu Jan 27 21:30:48 2022
    Stackable artificial leaf uses less power than lightbulb to capture 100
    times more carbon than other systems

    Date:
    January 27, 2022
    Source:
    University of Illinois Chicago
    Summary:
    Engineers built a cost-effective artificial leaf that can
    capture carbon dioxide at rates 100 times better than current
    systems. Unlike other carbon capture systems, which work in labs
    with pure carbon dioxide from pressurized tanks, this artificial
    leaf captures carbon dioxide from the air or flue gas and is
    modular.



    FULL STORY ========================================================================== Engineers at the University of Illinois Chicago have built a
    cost-effective artificial leaf that can capture carbon dioxide at rates
    100 times better than current systems. Unlike other carbon capture
    systems, which work in labs with pure carbon dioxide from pressurized
    tanks, this artificial leaf works in the real world. It captures carbon
    dioxide from more diluted sources, like air and flue gas produced by
    coal-fired power plants, and releases it for use as fuel and other
    materials.


    ==========================================================================
    "Our artificial leaf system can be deployed outside the lab, where it
    has the potential to play a significant role in reducing greenhouse gases
    in the atmosphere thanks to its high rate of carbon capture, relatively
    low cost and moderate energy, even when compared to the best lab-based systems," said Meenesh Singh, assistant professor of chemical engineering
    in the UIC College of Engineering and corresponding author on the paper.

    Using a ?previously reported theoretical concept, the scientists modified
    a standard artificial leaf system with inexpensive materials to include
    a water gradient -- a dry side and a wet side -- across an electrically
    charged membrane.

    On the dry side, an organic solvent attaches to available carbon
    dioxide to produce a concentration of bicarbonate, or baking soda,
    on the membrane. As bicarbonate builds, these negatively charged ions
    are pulled across the membrane toward a positively charged electrode in
    a water-based solution on the membrane's wet side. The liquid solution dissolves the bicarbonate back into carbon dioxide, so it can be released
    and harnessed for fuel or other uses.

    The electrical charge is used to speed up the transfer of bicarbonate
    across the membrane.

    When they tested the system, which is small enough to fit in a backpack,
    the UIC scientists found that it had a very high flux -- a rate of carbon capture compared with the surface area required for the reactions --
    of 3.3 millimoles per hour per 4 square centimeters. This is more
    than 100 times better than other systems, even though only a moderate
    amount of electricity (0.4 KJ/hour) was needed to power the reaction,
    less than the amount of energy needed for a 1 watt LED lightbulb. They calculated the cost at $145 per ton of carbon dioxide, which is in line
    with recommendations from the Department of Energy that cost should not
    exceed around $200 per ton.

    "It's particularly exciting that this real-world application of an electrodialysis-driven artificial leaf had a high flux with a small,
    modular surface area," Singh said. "This means that it has the potential
    to be stackable, the modules can be added or subtracted to more perfectly
    fit the need and affordably used in homes and classrooms, not just
    among profitable industrial organizations. A small module of the size
    of a home humidifier can remove greater than 1 kilogram of CO2 per day,
    and four industrial electrodialysis stacks can capture greater than 300 kilograms of CO2 per hour from flue gas." The UIC scientists report on
    the design of their artificial leaf and the results of their experiments
    in "Migration-assisted, moisture gradient process for ultrafast,
    continuous CO2 capture from dilute sources at ambient conditions,"
    which is published in Energy & Environmental Science.

    The research is funded by a grant (DE-SC-0022321) from the U.S. Department
    of Energy. A patent application titled "Artificial photosynthetic systems
    for integrated carbon capture and conversion" has been filed by the
    Office of Technology Management at UIC.

    Co-authors of the paper from UIC, Argonne National Laboratory, Oklahoma
    State University and Braskem are Aditya Prajapati, Rohan Sartape, Tomas
    Rojas, Naveen Dandu, Pratik Dhakal, Amey Thorat,?Jiahan Xie, Ivan Bessa,
    Miguel Galante,?Marcio Andrade, Robert Somich, Marcio Rebouc,as, Gus
    Hutras, Nathalia Diniz, Anh Ngo and Jindal Shah.

    ========================================================================== Story Source: Materials provided by University_of_Illinois_Chicago. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Aditya Prajapati, Rohan Sartape, Toma's Rojas, Naveen K. Dandu,
    Pratik
    Dhakal, Amey S. Thorat, Jiahan Xie, Ivan Bessa, Miguel T. Galante,
    Marcio H. S. Andrade, Robert T. Somich, Ma'rcio V. Rebouc,as,
    Gus T. Hutras, Natha'lia Diniz, Anh T. Ngo, Jindal Shah,
    Meenesh R. Singh. Migration- assisted, moisture gradient process
    for ultrafast, continuous CO2 capture from dilute sources at
    ambient conditions. Energy & Environmental Science, 2022; DOI:
    10.1039/D1EE03018C ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/01/220127114351.htm

    --- up 7 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)