• Astrophysicists confirm the faintest gal

    From ScienceDaily@1:317/3 to All on Thu Jun 1 22:30:42 2023
    Astrophysicists confirm the faintest galaxy ever seen in the early
    universe
    The small, distant galaxy JD1 is typical of the kind that burned through hydrogen left over from the Big Bang

    Date:
    June 1, 2023
    Source:
    University of California - Los Angeles
    Summary:
    After the Big Bang, the universe expanded and cooled sufficiently
    for hydrogen atoms to form. In the absence of light from the first
    stars and galaxies, the universe entered a period known as the
    cosmic dark ages.

    The first stars and galaxies appeared several hundred million
    years later and began burning away the hydrogen fog left over
    from the Big Bang, rendering the universe transparent, like it is
    today. Researchers have now confirmed the existence of a distant,
    faint galaxy typical of those whose light burned through the
    hydrogen atoms; the finding should help them understand how the
    cosmic dark ages ended.


    Facebook Twitter Pinterest LinkedIN Email

    ==========================================================================
    FULL STORY ========================================================================== After the Big Bang, the universe expanded and cooled sufficiently for
    hydrogen atoms to form. In the absence of light from the first stars
    and galaxies, the universe entered a period known as the cosmic dark ages.

    The first stars and galaxies appeared several hundred million years later
    and began burning away the hydrogen fog left over from the Big Bang,
    rendering the universe transparent, like it is today.

    Researchers led by astrophysicists from UCLA confirmed the existence of
    a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic
    dark ages ended.

    An international research team led by UCLA astrophysicists has confirmed
    the existence of the faintest galaxy ever seen in the early universe. The galaxy, called JD1, is one of the most distant identified to date, and
    it is typical of the kinds of galaxies that burned through the fog of
    hydrogen atoms left over from the Big Bang, letting light shine through
    the universe and shaping it into what exists today.

    The discovery was made using NASA's James Webb Space Telescope, and the findings are published in the journal Nature.

    The first billion years of the universe's life were a crucial period
    in its evolution. After the Big Bang, approximately 13.8 billion years
    ago, the universe expanded and cooled sufficiently for hydrogen atoms
    to form. Hydrogen atoms absorb ultraviolet photons from young stars;
    however, until the birth of the first stars and galaxies, the universe
    became dark and entered a period known as the cosmic dark ages. The
    appearance of the first stars and galaxies a few hundred million years
    later bathed the universe in energetic ultraviolet light which began
    burning, or ionizing, the hydrogen fog. That, in turn, enabled photons
    to travel through space, rendering the universe transparent.

    Determining the types of galaxies that dominated that era -- dubbed the
    Epoch of Reionization -- is a major goal in astronomy today, but until
    the development of the Webb telescope, scientists lacked the sensitive
    infrared instruments required to study the first generation of galaxies.

    "Most of the galaxies found with JWST so far are bright galaxies that
    are rare and not thought to be particularly representative of the young galaxies that populated the early universe," said Guido Roberts-Borsani,
    a UCLA postdoctoral researcher and the study's first author. "As such,
    while important, they are not thought to be the main agents that burned
    through all of that hydrogen fog.

    "Ultra-faint galaxies such as JD1, on the other hand, are far more
    numerous, which is why we believe they are more representative of the
    galaxies that conducted the reionization process, allowing ultraviolet
    light to travel unimpeded through space and time." JD1 is so dim and so
    far away that it is challenging to study without a powerful telescope --
    and a helping hand from nature. JD1 is located behind a large cluster
    of nearby galaxies, called Abell 2744, whose combined gravitational
    strength bends and amplifies the light from JD1, making it appear larger
    and 13 times brighter than it otherwise would. The effect, known as gravitational lensing, is similar to how a magnifying glass distorts and amplifies light within its field of view; without gravitational lensing,
    JD1 would likely have been missed.

    The researchers used the Webb Telescope's near-infrared spectrograph instrument, NIRSpec, to obtain an infrared light spectrum of the galaxy, allowing them to determine its precise age and its distance from Earth,
    as well as the number of stars and amount of dust and heavy elements
    that it formed in its relatively short lifetime.

    The combination of the galaxy's gravitational magnification and new images
    from another one of the Webb Telescope's near-infrared instruments,
    NIRCam, also made it possible for the team to study the galaxy's
    structure in unprecedented detail and resolution, revealing three main elongated clumps of dust and gas that are forming stars. The team used
    the new data to trace JD1's light back to its original source and shape, revealing a compact galaxy just a fraction of the size of older galaxies
    like the Milky Way, which is 13.6 billion years old.

    Because light takes time to travel to Earth, JD1 is seen as it was approximately 13.3 billion years ago, when the universe was only about 4%
    of its present age.

    "Before the Webb telescope switched on, just a year ago, we could not
    even dream of confirming such a faint galaxy," said Tommaso Treu, a UCLA physics and astronomy professor, and the study's second author. "The combination of JWST and the magnifying power of gravitational lensing
    is a revolution. We are rewriting the book on how galaxies formed and
    evolved in the immediate aftermath of the Big Bang."
    * RELATED_TOPICS
    o Space_&_Time
    # Astrophysics # Galaxies # Big_Bang # Cosmology #
    Astronomy # NASA # Space_Telescopes # Stars
    * RELATED_TERMS
    o Galaxy_formation_and_evolution o Big_Bang_nucleosynthesis o
    Big_Bang o Cosmic_microwave_background_radiation o Dark_matter
    o Atom o Galaxy o Large-scale_structure_of_the_cosmos

    ========================================================================== Story Source: Materials provided by
    University_of_California_-_Los_Angeles. Original written by Holly
    Ober. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro
    Morishita,
    Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano,
    Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly,
    Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati,
    Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Marusa
    Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabro',
    Jose M. Diego, Alan Dressler, Lukas J. Furtak, Alexei V. Filippenko,
    Alaina Henry, Anton M. Koekemoer, Nicha Leethochawalit, Matthew
    A. Malkan, Charlotte Mason, Amata Mercurio, Benjamin Metha,
    Laura Pentericci, Justin Pierel, Steven Rieck, Namrata Roy, Paola
    Santini, Victoria Strait, Robert Strausbaugh, Michele Trenti,
    Benedetta Vulcani, Lifan Wang, Xin Wang, Rogier A. Windhorst. The
    nature of an ultra-faint galaxy in the cosmic dark ages seen with
    JWST. Nature, 2023; DOI: 10.1038/s41586-023-05994-w ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/06/230601155742.htm

    --- up 1 year, 13 weeks, 3 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)