• Biological cleanup discovered for certai

    From ScienceDaily@1:317/3 to All on Wed May 31 22:30:34 2023
    Biological cleanup discovered for certain 'forever chemicals'
    Two species of naturally-occurring bacteria found to breakdown
    chlorinated 'forever chemicals,' AKA PFAS

    Date:
    May 31, 2023
    Source:
    University of California - Riverside
    Summary:
    Chemical and environmental engineering scientists have identified
    two species of bacteria found in soil that break down a class of
    stubborn 'forever chemicals'-- per- and poly-fluoroalkyl substances,
    or PFAS, that have contaminated groundwater below industrial and
    military sites throughout the nation. The discovery gives hope
    for low-cost biological cleanup of these pollutants.


    Facebook Twitter Pinterest LinkedIN Email

    ==========================================================================
    FULL STORY ========================================================================== University of California, Riverside, chemical and environmental
    engineering scientists have identified two species of bacteria found
    in soil that break down a class of stubborn "forever chemicals," giving
    hope for low-cost biological cleanup of industrial pollutants.

    These bacteria destroy a subgroup of per- and poly-fluoroalkyl substances,
    or PFAS, that have one or more chlorine atoms within their chemical
    structure, Yujie Men, an assistant professor in the Bourns College of Engineering, and her UCR colleagues, reported in the journal Natural
    Water.

    Unhealthful forever chemicals persist in the environment for decades
    or much longer because of their unusually strong carbon-to-fluorine
    bonds. Remarkably, the UCR team found that the bacteria cleave the
    pollutant's chlorine-carbon bonds, which starts a chain of reactions
    that destroy the forever chemical structures, rendering them harmless.

    "What we discovered is that bacteria can do carbon-chlorine bond cleavage first, generating unstable intermediates," Men said. "And then those
    unstable intermediates undergo spontaneous defluorination, which is the cleavage of the carbon-fluorine bond." Chlorinated PFAS are a large
    group in the forever chemical family of thousands of compounds. They
    include a variety of non-flammable hydraulic fluids used in industry and compounds used to make chemically stable films that serve as moisture
    barriers in various industrial, packaging, and electronic applications.

    The two bacteria species -- Desulfovibrio aminophilus and Sporomusa sphaeroides-- identified by Men's group are naturally occurring and are
    known to live in the subterranean microbiomes where groundwater may be contaminated with PFAS. For expedited cleanups, an inexpensive nutrient,
    such as methanol, could be injected into groundwater to promote bacterial growth. This would greatly increase the bacteria's presence to destroy
    the pollutants more effectively, Men said. If the bacteria are not
    already present, the contaminated water could be inoculated with one of
    the bacterium species.

    The title of the paper is "Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial
    hydrolytic dichlorination." Men is the corresponding author and Bosen
    Jin, a UCR chemical and environmental engineering graduate student,
    is the lead author. Other UCR co-authors are postdoc Jinyu Gao; former
    postdoc Huaqing Liu; former graduate students Shun Che and Yaochun Yu;
    and Associate Professor Jinyong Liu.

    The study expands on earlier work by Men, in which she demonstrated
    that microbes can breakdown a stubborn class of PFAS called fluorinated carboxylic acids.

    Microbes have long been used for biological cleanup of oil spills
    and other industrial pollutants, including the industrial solvent trichloroethylene or TCE, which Men has studied.

    But what's known about using microorganisms to clean up PFAS is still
    in its infancy, Men said. Her discovery shows great promise because
    biological treatments, if effective pollutant-eating microbes are
    available, are generally less costly and more environmentally friendly
    than chemical treatments.

    Pollutant-eating microbes can also be injected into difficult-to-reach locations underground.

    Men's latest PFAS study comes as the U.S. Environmental Protection Agency
    is promulgating new regulations to spur cleanups of PFAS-contaminated groundwater sites throughout the nation because these chemicals have been linked to a host of ill health effects, including cancer, kidney disease,
    and hormone disruptions.

    * RELATED_TOPICS
    o Plants_&_Animals
    # Bacteria # New_Species # Microbes_and_More # Soil_Types
    o Earth_&_Climate
    # Pollution # Geochemistry # Air_Quality # Air_Pollution
    * RELATED_TERMS
    o Soil_contamination o Environmental_engineering o Pesticide
    o Pollution o Civil_engineering o Endospore o PCB o Soil_science

    ========================================================================== Story Source: Materials provided by
    University_of_California_-_Riverside. Original written by David
    Danelski. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Bosen Jin, Huaqing Liu, Shun Che, Jinyu Gao, Yaochun Yu, Jinyong
    Liu,
    Yujie Men. Substantial defluorination of polychlorofluorocarboxylic
    acids triggered by anaerobic microbial hydrolytic
    dechlorination. Nature Water, 2023; 1 (5): 451 DOI:
    10.1038/s44221-023-00077-6 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/05/230531102022.htm

    --- up 1 year, 13 weeks, 2 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)