• Protein-based nano-'computer' evolves in

    From ScienceDaily@1:317/3 to All on Fri May 26 22:30:26 2023
    Protein-based nano-'computer' evolves in ability to influence cell
    behavior

    Date:
    May 26, 2023
    Source:
    Penn State
    Summary:
    The first protein-based nano-computing agent that functions as a
    circuit has been created. The milestone puts them one step closer
    to developing next-generation cell-based therapies to treat diseases
    like diabetes and cancer.


    Facebook Twitter Pinterest LinkedIN Email

    ==========================================================================
    FULL STORY ==========================================================================
    The first protein-based nano-computing agent that functions as a circuit
    has been created by Penn State researchers. The milestone puts them one
    step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

    Traditional synthetic biology approaches for cell-based therapies, such
    as ones that destroy cancer cells or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins
    to be expressed and degrade) and cost cellular energy in the process. A
    team of Penn State College of Medicine and Huck Institutes of the Life
    Sciences researchers are taking a different approach.

    "We're engineering proteins that directly produce a desired action,"
    said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair
    for research in the Department of Pharmacology. "Our protein-based
    devices or nano-computing agents respond directly to stimuli (inputs)
    and then produce a desired action (outputs)." In a study published in
    Science Advances today (May 26) Dokholyan and bioinformatics and genomics doctoral student Jiaxing Chen describe their approach to creating their nano-computing agent. They engineered a target protein by integrating
    two sensor domains, or areas that respond to stimuli. In this case,
    the target protein responds to light and a drug called rapamycin by
    adjusting its orientation, or position in space.

    To test their design, the team introduced their engineered protein into
    live cells in culture. By exposing the cultured cells to the stimuli,
    they used equipment to measure changes in cellular orientation after
    cells were exposed to the sensor domains' stimuli.

    Previously, their nano-computing agent required two inputs to produce
    one output. Now, Chen says there are two possible outputs and the
    output depends on which order the inputs are received. If rapamycin is
    detected first, followed by light, the cell will adopt one angle of cell orientation, but if the stimuli are received in a reverse order, then the
    cell adopts a different orientation angle. Chen says this experimental proof-of-concept opens the door for the development of more complex nano-computing agents.

    "Theoretically, the more inputs you embed into a nano-computing agent, the
    more potential outcomes that could result from different combinations,"
    Chen said.

    "Potential inputs could include physical or chemical stimuli and outputs
    could include changes in cellular behaviors, such as cell direction,
    migration, modifying gene expression and immune cell cytotoxicity
    against cancer cells." The team plans to further develop their
    nano-computing agents and experiment with different applications of the technology. Dokholyan, a researcher with Penn State Cancer Institute
    and Penn State Neuroscience Institute, said their concept could someday
    form the basis of the next-generation cell-based therapies for various diseases, such as autoimmune diseases, viral infections, diabetes,
    nerve injury and cancer.

    Yashavantha Vishweshwaraiah, Richard Mailman and Erdem Tabdanov of Penn
    State College of Medicine also contributed to this research. The authors declare no conflicts of interest.

    This work was funded by the National Institutes of Health (grant
    1R35GM134864) and the Passan Foundation.

    * RELATED_TOPICS
    o Health_&_Medicine
    # Stem_Cells # Lung_Cancer # Lymphoma
    o Plants_&_Animals
    # Cell_Biology # Molecular_Biology #
    Biotechnology_and_Bioengineering
    o Matter_&_Energy
    # Biochemistry # Batteries # Organic_Chemistry
    o Computers_&_Math
    # Computer_Science # Mobile_Computing #
    Spintronics_Research
    * RELATED_TERMS
    o Blood_transfusion o Stem_cell_treatments o Stem_cell o
    Chemotherapy o Gene_therapy o Nutrition o Personalized_medicine
    o Circuit_design

    ========================================================================== Story Source: Materials provided by Penn_State. Original written by
    Zachary Sweger. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Jiaxing Chen, Yashavantha L. Vishweshwaraiah, Richard B. Mailman,
    Erdem
    D. Tabdanov, Nikolay V. Dokholyan. A noncommutative
    combinatorial protein logic circuit controls cell orientation
    in nanoenvironments. Science Advances, 2023; 9 (21) DOI:
    10.1126/sciadv.adg1062 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/05/230526142234.htm

    --- up 1 year, 12 weeks, 4 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)