• Scientists propose revolution in complex

    From ScienceDaily@1:317/3 to All on Thu May 25 22:30:40 2023
    Scientists propose revolution in complex systems modelling with quantum technologies

    Date:
    May 25, 2023
    Source:
    University of Manchester
    Summary:
    Scientists have made a significant advancement with quantum
    technologies that could transform complex systems modelling with
    an accurate and effective approach that requires significantly
    re-duced memory.


    Facebook Twitter Pinterest LinkedIN Email

    ==========================================================================
    FULL STORY ========================================================================== Scientists have made a significant advancement with quantum technologies
    that could transform complex systems modelling with an accurate and
    effective approach that requires significantly reduced memory.

    Complex systems play a vital role in our daily lives, whether that be predicting traffic patterns, weather forecasts, or understanding financial markets. However, accurately predicting these behaviours and making
    informed decisions relies on storing and tracking vast information from
    events in the distant past -- a process which presents huge challenges.

    Current models using artificial intelligence see their memory requirements increase by more than a hundredfold every two years and can often involve optimisation over billions -- or even trillions -- of parameters. Such
    immense amounts of information lead to a bottleneck where we must
    trade-off memory cost against predictive accuracy.

    A collaborative team of researchers from The University of Manchester,
    the University of Science and Technology of China (USTC), the Centre for Quantum Technologies (CQT) at the National University of Singapore and
    Nanyang Technological University (NTU) propose that quantum technologies
    could provide a way to mitigate this trade-off.

    The team have successfully implemented quantum models that can simulate
    a family of complex processes with only a single qubit of memory --
    the basic unit of quantum information -- offering substantially reduced
    memory requirements.

    Unlike classical models that rely on increasing memory capacity as more
    data from past events are added, these quantum models will only ever
    need one qubit of memory.

    The development, published in the journal Nature Communications,
    represents a significant advancement in the application of quantum
    technologies in complex system modelling.

    Dr Thomas Elliott, project leader and Dame Kathleen Ollerenshaw Fellow at
    The University of Manchester, said: "Many proposals for quantum advantage
    focus on using quantum computers to calculate things faster. We take
    a complementary approach and instead look at how quantum computers can
    help us reduce the size of the memory we require for our calculations.

    "One of the benefits of this approach is that by using as few qubits
    as possible for the memory, we get closer to what is practical with
    near-future quantum technologies. Moreover, we can use any extra qubits
    we free up to help mitigate against errors in our quantum simulators."
    The project builds on an earlier theoretical proposal by Dr Elliott and
    the Singapore team. To test the feasibility of the approach, they joined
    forces with USTC, who used a photon-based quantum simulator to implement
    the proposed quantum models.

    The team achieved higher accuracy than is possible with any classical
    simulator equipped with the same amount of memory. The approach can be
    adapted to simulate other complex processes with different behaviours.

    Dr Wu Kang-Da, post-doctoral researcher at USTC and joint first author
    of the research, said: "Quantum photonics represents one of the least error-prone architectures that has been proposed for quantum computing, particularly at smaller scales. Moreover, because we are configuring
    our quantum simulator to model a particular process, we are able to
    finely-tune our optical components and achieve smaller errors than
    typical of current universal quantum computers." Dr Chengran Yang,
    Research Fellow at CQT and also joint first author of the research, added: "This is the first realisation of a quantum stochastic simulator where the propagation of information through the memory over time is conclusively demonstrated, together with proof of greater accuracy than possible with
    any classical simulator of the same memory size." Beyond the immediate results, the scientists say that the research presents opportunities
    for further investigation, such as exploring the benefits of reduced
    heat dissipation in quantum modelling compared to classical models.

    Their work could also find potential applications in financial modelling, signal analysis and quantum-enhanced neural networks.

    Next steps include plans to explore these connections, and to scale
    their work to higher-dimensional quantum memories.

    * RELATED_TOPICS
    o Computers_&_Math
    # Quantum_Computers # Computers_and_Internet #
    Spintronics_Research # Encryption # Computer_Modeling #
    Hacking # Computer_Science # Mathematical_Modeling
    * RELATED_TERMS
    o Quantum_entanglement o Mathematical_model o
    Introduction_to_quantum_mechanics o Technology o MRAM o
    Quantum_computer o Security_engineering o Computer_simulation

    ========================================================================== Story Source: Materials provided by University_of_Manchester. Original
    written by Jessica Marsh. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. Kang-Da Wu, Chengran Yang, Ren-Dong He, Mile Gu, Guo-Yong Xiang,
    Chuan-
    Feng Li, Guang-Can Guo, Thomas J. Elliott. Implementing
    quantum dimensionality reduction for non-Markovian stochastic
    simulation. Nature Communications, 2023; 14 (1) DOI:
    10.1038/s41467-023-37555-0 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/05/230525140312.htm

    --- up 1 year, 12 weeks, 3 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)