• Astronomers observe the first radiation

    From ScienceDaily@1:317/3 to All on Mon May 15 22:30:18 2023
    Astronomers observe the first radiation belt seen outside of our solar
    system
    High-resolution imaging of radio emissions from an ultracool dwarf show a double-lobed structure like the radiation belts of Jupiter

    Date:
    May 15, 2023
    Source:
    University of California - Santa Cruz
    Summary:
    Astronomers have described the first radiation belt observed outside
    our solar system, using a coordinated array of 39 radio dishes from
    Hawaii to Germany to obtain high-resolution images. The images
    of persistent, intense radio emissions from an ultracool dwarf
    reveal the presence of a cloud of high-energy electrons trapped
    in the object's powerful magnetic field, forming a double-lobed
    structure analogous to radio images of Jupiter's radiation belts.


    Facebook Twitter Pinterest LinkedIN Email

    ==========================================================================
    FULL STORY ========================================================================== Astronomers have described the first radiation belt observed outside our
    solar system, using a coordinated array of 39 radio dishes from Hawaii
    to Germany to obtain high-resolution images. The images of persistent,
    intense radio emissions from an ultracool dwarf reveal the presence of a
    cloud of high-energy electrons trapped in the object's powerful magnetic
    field, forming a double- lobed structure analogous to radio images of
    Jupiter's radiation belts.

    "We are actually imaging the magnetosphere of our target by observing the radio-emitting plasma -- its radiation belt -- in the magnetosphere. That
    has never been done before for something the size of a gas giant planet
    outside of our solar system," said Melodie Kao, a postdoctoral fellow at
    UC Santa Cruz and first author of a paper on the new findings published
    May 15in Nature.

    Strong magnetic fields form a "magnetic bubble" around a planet called a magnetosphere, which can trap and accelerate particles to near the speed
    of light. All the planets in our solar system that have such magnetic
    fields, including Earth, as well as Jupiter and the other giant planets,
    have radiation belts consisting of these high-energy charged particles
    trapped by the planet's magnetic field.

    Earth's radiation belts, known as the Van Allen belts, are large
    donut-shaped zones of high-energy particles captured from solar winds
    by the magnetic field.

    Most of the particles in Jupiter's belts are from volcanoes on its moon
    Io. If you could put them side by side, the radiation belt that Kao and
    her team have imaged would be 10 million times brighter than Jupiter's.

    Particles deflected by the magnetic field toward the poles generate
    auroras ("northern lights") when they interact with the atmosphere,
    and Kao's team also obtained the first image capable of differentiating
    between the location of an object's aurora and its radiation belts
    outside our solar system.

    The ultracool dwarf imaged in this study straddles the boundary between
    low- mass stars and massive brown dwarfs. "While the formation of stars
    and planets can be different, the physics inside of them can be very
    similar in that mushy part of the mass continuum connecting low-mass
    stars to brown dwarfs and gas giant planets," Kao explained.

    Characterizing the strength and shape of the magnetic fields of this class
    of objects is largely uncharted terrain, she said. Using their theoretical understanding of these systems and numerical models, planetary scientists
    can predict the strength and shape of a planet's magnetic field, but
    they haven't had a good way to easily test those predictions.

    "Auroras can be used to measure the strength of the magnetic field,
    but not the shape. We designed this experiment to showcase a method for assessing the shapes of magnetic fields on brown dwarfs and eventually exoplanets," Kao said.

    The strength and shape of the magnetic field can be an important factor
    in determining a planet's habitability. "When we're thinking about
    the habitability of exoplanets, the role of their magnetic fields in maintaining a stable environment is something to consider in addition
    to things like the atmosphere and climate," Kao said.

    To generate a magnetic field, a planet's interior must be hot enough to
    have electrically conducting fluids, which in the case of Earth is the
    molten iron in its core. In Jupiter, the conducting fluid is hydrogen
    under so much pressure it becomes metallic. Metallic hydrogen probably
    also generates magnetic fields in brown dwarfs, Kao said, while in the interiors of stars the conducting fluid is ionized hydrogen.

    The ultracool dwarf known as LSR J1835+3259 was the only object Kao
    felt confident would yield the high-quality data needed to resolve its radiation belts.

    "Now that we've established that this particular kind of steady-state,
    low- level radio emission traces radiation belts in the large-scale
    magnetic fields of these objects, when we see that kind of emission from
    brown dwarfs -- and eventually from gas giant exoplanets -- we can more confidently say they probably have a big magnetic field, even if our
    telescope isn't big enough to see the shape of it," Kao said, adding that
    she is looking forward to when the Next Generation Very Large Array,
    currently being planned by the National Radio Astronomy Observatory
    (NRAO), can image many more extrasolar radiation belts.

    "This is a critical first step in finding many more such objects and
    honing our skills to search for smaller and smaller magnetospheres,
    eventually enabling us to study those of potentially habitable, Earth-size planets," said coauthor Evgenya Shkolnik at Arizona State University,
    who has been studying the magnetic fields and habitability of planets
    for many years.

    The team used the High Sensitivity Array, consisting of 39 radio dishes coordinated by the NRAO in the United States and the Effelsberg radio
    telescope operated by the Max Planck Institute for Radio Astronomy
    in Germany.

    "By combining radio dishes from across the world, we can make incredibly
    high- resolution images to see things no one has ever seen before. Our
    image is comparable to reading the top row of an eye chart in California
    while standing in Washington, D.C.," said coauthor Jackie Villadsen at
    Bucknell University.

    Kao emphasized that this discovery was a true team effort, relying heavily
    on the observational expertise of co-first author Amy Mioduszewski
    at NRAO in planning the study and analyzing the data, as well as the multiwavelength stellar flare expertise of Villadsen and Shkolnik. This
    work was supported by NASA and the Heising-Simons Foundation.

    * RELATED_TOPICS
    o Space_&_Time
    # Solar_Flare # Sun # Extrasolar_Planets # Stars #
    Jupiter # Solar_System # Cosmic_Rays # Eris_(Xena)
    * RELATED_TERMS
    o Radio_telescope o Solar_flare o Ionosphere o
    Van_Allen_radiation_belt o Solar_system o Geomagnetic_reversal
    o Spitzer_space_telescope o Green_Bank_Telescope

    ========================================================================== Story Source: Materials provided by
    University_of_California_-_Santa_Cruz. Original written by Tim
    Stephens. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Melodie M. Kao, Amy J. Mioduszewski, Jackie Villadsen, Evgenya L.

    Shkolnik. Resolved imaging confirms a radiation belt around an
    ultracool dwarf. Nature, 2023; DOI: 10.1038/s41586-023-06138-w ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/05/230515131947.htm

    --- up 1 year, 11 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)