• How do we know if our brain is capable o

    From ScienceDaily@1:317/3 to All on Mon Apr 3 22:30:20 2023
    How do we know if our brain is capable of repairing itself?

    Date:
    April 3, 2023
    Source:
    Netherlands Institute for Neuroscience - KNAW
    Summary:
    Is our brain able to regenerate? And can we harness this
    regenerative potential during aging or in neurodegenerative
    conditions? These questions sparked intense controversy within
    the field of neuroscience for many years. A new study shows why
    there are conflicting results and proposes a roadmap on how to
    solve these issues.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ==========================================================================
    Is our brain able to regenerate? And can we harness this regenerative
    potential during aging or in neurodegenerative conditions? These questions sparked intense controversy within the field of neuroscience for many
    years. A new study from the Netherlands Institute for Neuroscience shows
    why there are conflicting results and proposes a roadmap on how to solve
    these issues.


    ==========================================================================
    The notion of exploiting the regenerative potential of the human brain
    in aging or neurological diseases represents a particularly attractive alternative to conventional strategies for enhancing or restoring brain function, especially given the current lack of effective therapeutic
    strategies in neurodegenerative disorders like Alzheimer's disease. The question of whether the human brain does possess the ability to
    regenerate or not has been at the center of a fierce scientific debate
    for many years and recent studies yielded conflicting results. A new
    study from Giorgia Tosoni and Dilara Ayyildiz, under the supervision of
    Evgenia Salta in the laboratory of Neurogenesis and Neurodegeneration, critically discusses and re-analyzes previously published datasets. How
    is it possible that we haven't yet found a clear answer to this mystery? Previous studies in which dividing cells were labeled in postmortem human brain, showed that new cells can indeed arise throughout adulthood in
    the hippocampus of our brain, a structure that plays an important role
    in learning and memory, and is also severely affected in Alzheimer's
    disease. However, other studies contradict these results and cannot
    detect the generation of new brain cells in this area. Both conceptual
    and methodological confounders have likely contributed to these seemingly opposing observations. Hence, elucidating the extent of regeneration in
    the human brain remains a challenge.

    New state-of-the-art technologies Recent advances in single-cell transcriptomics technologies have provided valuable insights into
    the different cell types found in human brains from deceased donors
    with different brain diseases. To date, single-cell transcriptomic
    technologies have been used to characterize rare cell populations
    in the human brain. In addition to identifying specific cell types, single-nucleus RNA sequencing can also explore specific gene expression profiles to unravel full the complexity of the cells in the hippocampus.

    The advent of single-cell transcriptomics technologies was initially
    viewed as a panacea to resolving the controversy in the field. However,
    recent single- cell RNA sequencing studies in human hippocampus yielded conflicting results.

    Two studies indeed identified neural stem cells, while a third study
    failed to detect any neurogenic populations. Are these novel approaches --
    once again - - failing to finally settle the controversy regarding the existence of hippocampal regeneration in humans? Will we eventually be
    able to overcome the conceptual and technical challenges and reconcile
    these -seemingly- opposing views and findings? Technical issues In this
    study, the researchers critically discussed and re-analyzed previously published single-cell transcriptomics datasets. They caution that
    the design, analysis and interpretation of these studies in the adult
    human hippocampus can be confounded by specific issues, which ask for conceptual, methodological and computational adjustments. By re-analyzing previously published datasets, a series of specific challenges were
    probed that require particular attention and would greatly profit from
    an open discussion in the field.

    Giorgia Tosoni: 'We analyzed previously published single-cell
    transcriptomic studies and performed a meta-analysis to assess whether
    adult neurogenic populations can reliably be identified across different species, especially when comparing mice and humans. The neurogenic
    process in adult mice is very well characterized and the profiles of the different cellular populations involved are known. These are actually
    the same molecular and cellular signatures that have been widely used in
    the field to also identify neurogenic cells in the human brain. However,
    due to several evolutionary adaptations, we would expect the neurogenesis between mice and humans to be different. We checked the markers for every neurogenic cell type and looked at the amount of marker overlap between
    the two species.' 'We found very little, if no, overlap between the two,
    which suggests that the mouse-inferred markers we have been long using
    may not be suitable for the human brain. We also discovered that such
    studies require enough statistical power: if regeneration of neuronal
    cells does happen in the adult human brain, we expect it to be quite
    rare. Therefore, enough cells would need to be sequenced in order to
    identify those scarce, presumably neurogenic populations.

    Other parameters are also important, for example the quality of the
    samples.

    The interval between the death of the donor and the downstream
    processing is critical, since the quality of the tissue and of the
    resulting data drops over time.' Reproducibility is key Dilara
    Ayyildiz: 'These novel technologies, when appropriately applied,
    offer a unique opportunity to map hippocampal regeneration in the
    human brain and explore which cell types and states may be possibly
    most amenable to therapeutic interventions in aging, neurodegenerative
    and neuropsychiatric diseases. However, reproducibility and consistency
    are key. While doing the analysis we realized that some seemingly small,
    but otherwise very critical details and parameters in the experimental
    and computational pipeline, can have a big impact on the results, and
    hence affect the interpretation of the data.' 'Accurate reporting is
    essential for making these single-cell transcriptomics experiments and
    their analysis reproducible. Once we re-analyzed these previous studies applying common computational pipelines and criteria, we realized that
    the apparent controversy in the field may in reality be misleading:
    with our work we propose that there may actually be more that we agree
    on than previously believed.'
    * RELATED_TOPICS
    o Health_&_Medicine
    # Brain_Tumor # Nervous_System # Stem_Cells # Lymphoma
    o Mind_&_Brain
    # Brain-Computer_Interfaces # Brain_Injury # Neuroscience
    # Intelligence
    * RELATED_TERMS
    o Neuroscience o Neurobiology o Cognitive_neuroscience o
    Psychology o Psycholinguistics o Bioethics o Parkinson's_disease
    o Memory

    ========================================================================== Story Source: Materials provided by Netherlands_Institute_for_Neuroscience_-_KNAW. Note: Content may be
    edited for style and length.


    ========================================================================== Journal Reference:
    1. Giorgia Tosoni, Dilara Ayyildiz, Julien Bryois, Will Macnair,
    Carlos P.

    Fitzsimons, Paul J. Lucassen, Evgenia Salta. Mapping human
    adult hippocampal neurogenesis with single-cell transcriptomics:
    Reconciling controversy or fueling the debate? Neuron, 2023; DOI:
    10.1016/ j.neuron.2023.03.010 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/04/230403133506.htm

    --- up 1 year, 5 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)