• One is bad enough: climate change raises

    From ScienceDaily@1:317/3 to All on Mon Feb 27 21:30:28 2023
    One is bad enough: climate change raises the threat of back-to-back
    hurricanes

    Date:
    February 27, 2023
    Source:
    Princeton University, Engineering School
    Summary:
    Driven by a combination of rising sea levels and climate change,
    destructive hurricanes and tropical storms could become far more
    likely to hit coastal areas in quick succession, researchers
    found. In some areas such double hits could occur as frequently
    as once every 3 years.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ========================================================================== Getting hit with one hurricane is bad enough, but new research from
    Princeton University's engineering school shows that back-to-back versions
    may become common for many areas in coming decades.


    ========================================================================== Driven by a combination of rising sea levels and climate change,
    destructive hurricanes and tropical storms could become far more likely to
    hit coastal areas in quick succession, researchers found. In an article, published Feb. 27 in the journal Nature Climate Change, the researchers
    said that in some areas, like the Gulf Coast, such double hits could
    occur as frequently as once every 3 years.

    "Rising sea levels and climate change make sequential damaging hurricanes
    more likely as the century progresses," said Dazhi Xi, a postdoctoral researcher and a former graduate student in civil and environmental
    engineering and the paper's lead author. "Today's extremely rare events
    will become far more frequent." Researchers led by Ning Lin, an associate professor civil and environmental engineering at Princeton University,
    first raised questions about increasing frequency of sequential hurricanes after a particularly destructive hurricane season in 2017. That summer, Hurricane Harvey struck Houston followed by Irma in South Florida and
    Maria in Puerto Rico. The emergency planning challenges raised by 3 major hurricanes led researchers to question whether multiple destructive storms could occur more readily due to climate change, and what steps could be
    taken to prepare for this. In the late summer of 2021, Hurricane Ida
    struck Louisiana, followed shortly by Tropical Storm Nicholas, which
    had made landfall as a hurricane in Texas.

    The researchers said their study showed that sequential storms have
    become more common on the East Coast and the Gulf Coast, although they
    remain relatively rare.

    "Sequential hurricane hazards are happening already, so we felt they
    should be studied," Lin said. "There has been an increasing trend in
    recent decades." The researchers ran computer simulations to determine
    the change in likelihood of multiple destructive storms hitting the same
    area within a short period of time such as 15 days over this century. They looked at two scenarios: a future with moderate carbon emissions and
    one with higher emissions. In both cases, the chance of sequential,
    damaging storms increased dramatically.

    There is a general scientific consensus that climate change will increase
    the intensity of Atlantic hurricanes in the coming century. But there is
    some uncertainty in whether the number of storms will increase, decrease,
    or stay the same over the period, the researchers noted. The model used
    by Lin's team showed an increasing number of storms, but other models
    have shown no increase.

    However, Lin's team found that even without an increase in the overall frequency of storms, the increase in intensity will make it much more
    likely that areas along with East Coast and Gulf Coast will experience sequential storms.

    "The proportion of storms that can have an impact on communities is increasing," Lin said. "The frequency of storms is not as important as the increasing number of storms that can become hazardous." The increasing
    hazard is mainly driven by two developments: rising sea levels and
    increasing precipitation driven by climate change. Sea level rise is
    occurring worldwide with the changing climate, and it is compounded
    on the Atlantic coast by geography. As sea levels rise, storm surge
    becomes more of a threat to coastal communities because the baseline
    water level is higher. A 3- meter storm surge on top of a historically
    normal water level is less damaging to roads than the same surge on
    top of a water level that is elevated by .5 meters. At the same time,
    storms are intensifying and higher average air temperatures mean that
    storms carry more water. This means rainfall and flooding from storms
    are likely to increase.

    The combination of both factors means that storms that might have passed
    with little notice in the past will become threats, particularly when
    they hit one after another. In 2021, for example, Tropical Storm Nicholas
    was relatively weak when it hit Louisiana, but the storm caused more
    problems than expected because the state was still recovering from the destruction related to Hurricane Ida.

    "Nicholas was quite a weak storm and one reason it produced a significant hazard was that the soil was already saturated," Lin said. "So there was
    a lot of flooding." The researchers said it is important for community planners and regional emergency officials to recognize this emerging
    threat. Improvements in both resilience and response are required to
    meet the increasing hazard. For resilience, communities will need to
    deal with increased flooding threats and harden systems that remove
    floodwater and protect critical infrastructure such as transportation,
    water systems and power grids. Emergency response teams will have to be prepared to handle multiple storms in relatively quick succession.

    On the state and federal level, this could mean being ready to dispatch resources to many stricken communities at the same time.

    "If a power system requires 15 days to recover from a major hurricane,
    we cannot wait that long in the future because the next storm can hit
    before you can restore power, as in the case of Nicholas following Ida"
    Lin said. "We need to think about plans, rescue workers, resources. How
    will we plan for this?"
    * RELATED_TOPICS
    o Earth_&_Climate
    # Severe_Weather # Storms # Hurricanes_and_Cyclones
    # Weather # Climate # Global_Warming #
    Environmental_Awareness # Geomagnetic_Storms
    * RELATED_TERMS
    o Effects_of_global_warming o National_Hurricane_Center o
    Saffir-Simpson_Hurricane_Scale o Flood o Global_climate_model
    o Dune o IPCC_Report_on_Climate_Change_-_2007 o Weather

    ========================================================================== Story Source: Materials provided by
    Princeton_University,_Engineering_School. Original written by John
    Sullivan. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Dazhi Xi, Ning Lin, Avantika Gori. Increasing sequential tropical
    cyclone
    hazards along the US East and Gulf coasts. Nature Climate Change,
    2023; DOI: 10.1038/s41558-023-01595-7 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/02/230227161437.htm

    --- up 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)