• Bubbles of methane rising from seafloor

    From ScienceDaily@1:317/3 to All on Wed Jan 19 21:30:36 2022
    Bubbles of methane rising from seafloor in Puget Sound

    Date:
    January 19, 2022
    Source:
    University of Washington
    Summary:
    The release of methane, a powerful greenhouse gas responsible for
    almost a quarter of global warming, is being studied around the
    world, from Arctic wetlands to livestock feedlots. A team has
    discovered a source much closer to home: 349 plumes of methane
    gas bubbling up from the seafloor in Puget Sound, which holds more
    water than any other U.S.

    estuary.



    FULL STORY ==========================================================================
    The release of methane, a powerful greenhouse gas responsible for almost
    a quarter of global warming, is being studied around the world, from
    Arctic wetlands to livestock feedlots. A University of Washington team
    has discovered a source much closer to home: 349 plumes of methane gas
    bubbling up from the seafloor in Puget Sound, which holds more water
    than any other U.S. estuary.


    ==========================================================================
    The columns of bubbles are especially pronounced off Alki Point in West
    Seattle and near the ferry terminal in Kingston, Washington, according
    to a study in the January issue of Geochemistry, Geophysics, Geosystems.

    "There's methane plumes all over Puget Sound," said lead author Paul
    Johnson, a UW professor of oceanography. "Single plumes are all over the
    place, but the big clusters of plumes are at Kingston and at Alki Point." Previous UW research had found methane bubbling up from the outer
    coasts of Washington and Oregon. The bubbles in Puget Sound were first discovered by surprise in 2011, when the UW's global research vessel,
    the RV Thomas G.

    Thompson, had kept its sonar beams turned on as it returned to its home
    port on the UW campus. The underwater images created by the soundwaves
    showed a distinct, persistent bubble plumes as the vessel rounded the
    Kingston ferry terminal.

    Since then, the team analyzed sonar data collected during 18 cruises on
    the UW's smaller research vessel, the RV Rachel Carson. Methane plumes
    were seen from Hood Canal to offshore of Everett to south of the Tacoma Narrows. At Alki, the bubbles rise 200 meters, about the height of the
    Space Needle, to reach the ocean's surface.

    "Off Alki, every 3 feet or so there's a crisp, sharp hole in the
    seafloor that's 3-5 inches in diameter," Johnson said. "There are holes
    all over the place, but there aren't bubbles or fluid coming out of all
    of them. There's occasionally a burst of bubbles, and then another one
    50 feet away that has a new burst of bubbles." The study is an early
    step toward exploring the release of methane from estuaries, or places
    where saltwater and freshwater meet, a subject more widely studied
    in Europe. Though only a small amount of natural methane is released
    compared to human sources, understanding how the greenhouse gas cycles
    through ecosystems becomes increasingly important with climate change.



    ==========================================================================
    "In order to understand methane in the atmosphere and control the human sources, we have to know the natural sources," Johnson said.

    The two persistent fields of bubble plumes occur above geologic faults:
    for the Alki bubbles, located above a branch of the Seattle Fault, and
    for the Kingston bubbles, above the South Whidbey Fault. It's likely
    that the bubbles are connected to the underlying geology, Johnson said.

    Questions remain about the bubbles' origins. One initial hypothesis,
    that the bubbles might be coming from the Cascadia Subduction Zone,
    was not supported by preliminary data. The gas bubbles don't show the
    same distinctive chemistry as nearby hot springs and deep wells that
    connect to this geologic feature deep underground.

    Humans also don't seem responsible. Puget Sound has in the past been
    a dumping ground for waste or sediment, but vigorous tides sweep that
    material out into the open ocean, Johnson said. Sewer outflows, gas
    lines and freshwater storm drains also don't match the plumes' locations.

    Instead, a biological source of methane beneath the seafloor seems likely, Johnson said. The source may be in the dense clay sediment deposited
    after the last Ice Age, when glaciers first carved out the Puget Sound
    basin. The methane seems to be biological in origin, and the bubbles
    also support methane-eating bacterial mats in the surrounding water.



    ========================================================================== Jerry (Junzhe) Liu, a senior in oceanography, helped to analyze the data
    and participated in a 2019 cruise that contributed data.

    "I'm interested in two seemingly parallel fields: fault zones and air-sea interactions for climate," Liu said. "This project covers all the way
    from below the seafloor to above the ocean's surface." In follow-up
    work, scientists used underwater microphones this fall to eavesdrop
    on the bubbles. Shima Abadi, an associate professor at the University
    of Washington Bothell, is analyzing the sound that bubbles make when
    they are emitted. The team also hopes to go back to Alki Point with a
    remotely operated vehicle that could place instruments inside a vent
    hole to fully analyze the emerging fluid and gas.

    Co-authors of the paper are Tor Bjorklund, an engineer in UW oceanography; Chenyu (Fiona) Wang, a former UW undergraduate; Susan Hautala, a UW
    associate professor of oceanography; and Susan Merle at the National
    Oceanic and Atmospheric Administration. The research was funded by the
    National Science Foundation.

    ========================================================================== Story Source: Materials provided by University_of_Washington. Original
    written by Hannah Hickey. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. H. Paul Johnson, Susan G. Merle, Tor A. Bjorklund, Susan L. Hautala,
    Tamara Baumberger, Sharon L. Walker, Junzhe Liu, Nicholas D. Ward,
    Chenyu Wang. Methane Plume Emissions Associated With Puget
    Sound Faults in the Cascadia Forearc. Geochemistry, Geophysics,
    Geosystems, 2021; 23 (1) DOI: 10.1029/2021GC010211 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/01/220119135047.htm

    --- up 6 weeks, 4 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)