• Decarbonization tech instantly converts

    From ScienceDaily@1:317/3 to All on Wed Jan 19 21:30:36 2022
    Decarbonization tech instantly converts co2 to solid carbon

    Date:
    January 19, 2022
    Source:
    RMIT University
    Summary:
    A smart and super-efficient new way of capturing carbon dioxide and
    converting it to solid carbon could help advance the decarbonization
    of heavy industries.



    FULL STORY ========================================================================== Australian researchers have developed a smart and super-efficient new
    way of capturing carbon dioxide and converting it to solid carbon,
    to help advance the decarbonisation of heavy industries.


    ==========================================================================
    The carbon dioxide utilisation technology from researchers at RMIT
    University in Melbourne, Australia, is designed to be smoothly integrated
    into existing industrial processes.

    Decarbonisation is an immense technical challenge for heavy industries
    like cement and steel, which are not only energy-intensive but also
    directly emit CO2 as part of the production process.

    The new technology offers a pathway for instantly converting carbon
    dioxide as it is produced and locking it permanently in a solid state,
    keeping CO2 out of the atmosphere.

    The research is published in the journal Energy & Environmental Science.

    Co-lead researcher Associate Professor Torben Daeneke said the work built
    on an earlier experimental approach that used liquid metals as a catalyst.



    ==========================================================================
    "Our new method still harnesses the power of liquid metals but the design
    has been modified for smoother integration into standard industrial
    processes," Daeneke said.

    "As well as being simpler to scale up, the new tech is radically more
    efficient and can break down CO2 to carbon in an instant.

    "We hope this could be a significant new tool in the push towards decarbonisation, to help industries and governments deliver on their
    climate commitments and bring us radically closer to net zero."
    A provisional patent application has been filed for the technology
    and researchers have recently signed a $AUD2.6 million agreement with Australian environmental technology company ABR, who are commercialising technologies to decarbonise the cement and steel manufacturing industries.

    Co-lead researcher Dr Ken Chiang said the team was keen to hear from
    other companies to understand the challenges in difficult-to-decarbonise industries and identify other potential applications of the technology.



    ==========================================================================
    "To accelerate the sustainable industrial revolution and the zero carbon economy, we need smart technical solutions and effective research-industry collaborations," Chiang said.

    The steel and cement industries are each responsible for about 7% of
    total global CO2 emissions (International Energy Agency), with both
    sectors expected to continue growing over coming decades as demand is
    fuelled by population growth and urbanisation.

    Technologies for carbon capture and storage (CCS) have largely focused
    on compressing the gas into a liquid and injecting it underground, but
    this comes with significant engineering challenges and environmental
    concerns. CCS has also drawn criticism for being too expensive and energy-intensive for widespread use.

    Daeneke, an Australian Research Council DECRA Fellow, said the new
    approach offered a sustainable alternative, with the aim of both
    preventing CO2 emissions and delivering value-added reutilisation
    of carbon.

    "Turning CO2 into a solid avoids potential issues of leakage and locks
    it away securely and indefinitely," he said.

    "And because our process does not use very high temperatures, it would be feasible to power the reaction with renewable energy." The Australian Government has highlighted CCS as a priority technology for investment
    in its net zero plan, announcing a $1 billion fund for the development
    of new low emissions technologies.

    How the tech works The RMIT team, with lead author and PhD researcher
    Karma Zuraiqi, employed thermal chemistry methods widely used by industry
    in their development of the new CCS tech.

    The "bubble column" method starts with liquid metal being heated to
    about 100- 120C.

    Carbon dioxide is injected into the liquid metal, with the gas bubbles
    rising up just like bubbles in a champagne glass.

    As the bubbles move through the liquid metal, the gas molecule splits
    up to form flakes of solid carbon, with the reaction taking just a
    split second.

    "It's the extraordinary speed of the chemical reaction we have achieved
    that makes our technology commercially viable, where so many alternative approaches have struggled," Chiang said.

    The next stage in the research is scaling up the proof-of-concept to a modularized prototype the size of a shipping container, in collaboration
    with industry partner ABR.

    ABR Project Director David Ngo said the RMIT process turns a waste
    product into a core ingredient in the next generation of cement blends.

    "Climate change will not be solved by one single solution, however, the collaboration between ABR and RMIT will yield an efficient and effective technology for our net-zero goals," Ngo said.

    The team is also investigating potential applications for the converted
    carbon, including in construction materials.

    "Ideally the carbon we make could be turned into a value-added product, contributing to the circular economy and enabling the CCS technology to
    pay for itself over time," Daeneke said.

    The research involved a multi-disciplinary collaboration across
    engineering and science, with RMIT co-authors Jonathan Clarke-Hannaford,
    Billy James Murdoch, Associate Professor Kalpit Shah and Professor
    Michelle Spencer.

    ========================================================================== Story Source: Materials provided by RMIT_University. Original written
    by Gosia Kaszubska.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Karma Zuraiqi, Ali Zavabeti, Jonathan Clarke-Hannaford, Billy James
    Murdoch, Kalpit Shah, Michelle J. S. Spencer, Chris F. McConville,
    Torben Daeneke, Ken Chiang. Direct conversion of CO2 to solid
    carbon by Ga-based liquid metals. Energy & Environmental Science,
    2022; DOI: 10.1039/ d1ee03283f ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/01/220119121411.htm

    --- up 6 weeks, 4 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)