• Integrated modeling of climate impacts o

    From ScienceDaily@1:317/3 to All on Tue Jan 18 21:30:40 2022
    Integrated modeling of climate impacts on electricity demand and cost


    Date:
    January 18, 2022
    Source:
    Penn State
    Summary:
    Around the world, energy systems are increasingly impacted by
    the effects of a changing climate. Energy systems, especially the
    electric-power system, are vulnerable to natural stressors such
    as wildfires, severe storms, extreme temperatures and long-term
    disruptions of the hydrological cycle.



    FULL STORY ========================================================================== Around the world, energy systems are increasingly impacted by the effects
    of a changing climate. Energy systems, especially the electric-power
    system, are vulnerable to natural stressors such as wildfires, severe
    storms, extreme temperatures and long-term disruptions of the hydrological cycle.


    ==========================================================================
    "As we have experienced in recent years, there have been more and more
    natural stressors on our systems, like the cold snap in Texas last
    year and the wildfires and droughts in the West," said Mort Webster,
    professor of energy engineering. "Increasingly, these stressors are
    causing major regional power disruptions and there is good reason
    to think these may increase in the future with more climate change."
    Impacts of climate-related water stress and temperature changes can
    cascade through energy systems, although models have yet to capture
    this compounding of effects. A team of researchers led by Penn State has developed a coupled water- power-economy model to capture these important interactions in a study of the exceedance of water temperature thresholds
    for power generation.

    "Models are typically operated independently of one another," said Karen Fisher-Vanden, professor of environmental and resource economics and
    public policy, director of the Institute for Sustainable Agricultural,
    Food, and Environmental Science (SAFES), and principal investigator of
    the Program on Coupled Human and Earth Systems (PCHES), a U.S. Department
    of Energy supported project that funded this work. "Under different
    scenarios of changing weather patterns and extremes, the impacts on the
    human and natural systems can vary and the interactions between systems
    can be critical. This research integrates multiple existing models to
    capture the interactions and feedbacks." The team conducted a case
    study for the western United States based on the Western Electricity Coordinating Council reliability system, which corresponds to the 12
    states of the United States that are west of the Rocky Mountains as well
    as portions of British Columbia, Alberta and northern Mexico, to explore
    how vulnerable the system is and when and where it is vulnerable. Their findings are published in the journal Nature Energy.

    "Our team developed a framework to investigate what we need to do for
    our systems to be ready for the next 50 to 100 years of shocks and how to
    make them more resilient," said Webster, lead author on the study. "For example, chronic water shortages in the western United States have gone unabated, and an increased frequency and severity of droughts and heat
    waves could result in insufficient cooling water for thermal generators, restricting power supply." Multisector dynamical systems, such as
    the coupled water-power-economy system in this study, are composed of overlapping and intersecting networks. The intersecting framework in
    this study looked at the regional network of watersheds and basins,
    the electric-power grid, and the regional economy.



    ==========================================================================
    "Our study is the first to look at how water stress, in a detailed representation, ripples through the power system all the way to economic losses," Webster said. "Our coupled model framework captures interactions across water, power and economic systems while retaining spatial,
    temporal and sectoral detail." The team's analysis of the impacts of
    a range of climate forcing patterns on the coupled water-power-economic
    system demonstrated that higher water temperatures can lead to a causal
    chain of events, from electric-power generators being offline because of
    the cooling-water intake-temperature limits, to higher electricity costs
    and unmet electricity demand, to economic adjustment and productivity reductions in electricity-using sectors.

    The team found that many climate patterns that result in generator
    outages from higher water temperatures do not result in any significant impacts. For any given external shock, the interconnected networks in the water-power-economic system mitigate the impact by providing redundancy
    and transferring the impact spatially.

    "An important implication of this result is that a reduction in available generation capacity on a given day does not necessarily indicate any significant cost," Webster said. "Our system is pretty resilient since
    we have built a lot of redundancy into it. It takes a big shock to
    actually disrupt things so that energy does not get to the consumer."
    According to the researchers, most of the economic impacts result from a
    demand for electricity that cannot be met at specific times and locations.



    ==========================================================================
    "We found that intermittent interruptions in electricity supply
    at critical times of the day, week and year account for much of the
    economic impacts," Webster said. "Net consumption loss can be as much
    as 0.3% annually across the broader regional economy, with up to a 3%
    increase in the average cost of electricity and more than a 1% loss of production from regional manufacturing." They also found that impacts
    may be in different locations from the original water stress.

    "As interdependent systems become more stressed from many stressors
    occurring all at the same time, all it takes is one more push to create a problem and that problem may show up somewhere else because the system is
    a single interconnected network," Webster said. "So as more wildfires, droughts, floods and cold snaps stress the system, we may see more
    frequent impacts. Although over the last 50 years, we have not had
    very many catastrophic outages, we do need to prepare for what may be
    coming and build even more redundancy than we have now into the system."
    The results underscore the importance of accounting for feedbacks between overlapping and interacting system networks. Importantly, this type
    of coupled model approach allows investigators to retain the spatial,
    temporal and sectoral richness represented in each of these individual
    models that would be unachievable in one comprehensive model where detail
    is usually sacrificed for computational tractability.

    Penn State's Institute for Computational and Data Sciences provided computational consulting and software engineering support for this work.

    Other authors on the study include Vijay Kumar and Joseph Perla, graduate students from Penn State, and Richard B. Lammers from the University of
    New Hampshire.

    This study was conducted as part of a $20 million, five-year project
    with the U.S. Department of Energy. The team recently received a $17
    million cooperative research agreement from the DOE to study climate
    risk and adaptation strategies.

    ========================================================================== Story Source: Materials provided by Penn_State. Note: Content may be
    edited for style and length.


    ========================================================================== Journal Reference:
    1. Mort Webster, Karen Fisher-Vanden, Vijay Kumar, Richard B. Lammers,
    Joseph Perla. Integrated hydrological, power system and economic
    modelling of climate impacts on electricity demand and cost. Nature
    Energy, 2022; DOI: 10.1038/s41560-021-00958-8 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/01/220118104122.htm

    --- up 6 weeks, 3 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)