• Systematically examining the way spatial

    From ScienceDaily@1:317/3 to All on Fri Jan 14 21:30:36 2022
    Systematically examining the way spatial structure influences the
    evolution of cancer

    Date:
    January 14, 2022
    Source:
    City University London
    Summary:
    Characterizing the way, manner or pattern of evolution in tumors
    may be important for clinical forecasting and optimizing cancer
    treatment.

    Researchers are systematically examining how spatial structure
    influences tumor evolution. To do this the group developed a
    computational model with the flexibility to simulate alternative
    spatial structures and types of cell dispersal.



    FULL STORY ==========================================================================
    Dr Robert Noble, a Lecturer in Mathematics in the School of Mathematics, Computer Science and Engineering (SMCSE) believes that characterising
    the way, manner or pattern of evolution in tumours is important for
    clinical forecasting and optimising cancer treatment.


    ==========================================================================
    Dr Noble and his colleagues in Professor Niko Beerenwinkel's research
    group at ETH Zurich, have published a new study in Nature Ecology & Evolution,which is the first to systematically examine how spatial
    structure influences tumour evolution.

    To do this the group developed a computational model with the
    flexibility to simulate alternative spatial structures and types of
    cell dispersal. They then ran thousands of simulations with different structures and parameter values and compared the results to recent, state-​of-the-art DNA sequencing data from actual human tumours.

    The team found that the diverse spatial structures of human tumours
    can cause them to evolve in vastly different ways. The computer model predictions are consistent with clinical data for cancer types with
    matching structures.

    Dr Noble says that one of the major challenges in cancer research
    "is inferring the properties of a tumour based on limited
    genetic information. To understand this problem, consider a sports
    analogy. Suppose you're told only that in a head-​to-head game, Team
    A scored twice as often as Team B. Can you figure out how much better Team
    A is than Team B, so you can predict the outcomes of future contests?"
    "One way to answer this question is to use a computer model, in which each
    team is assigned a probability of scoring on each attempt. After trying
    many different settings, you can conclude that the most likely scoring probabilities are those for which the simulation outcomes resemble the
    actual game result.

    Although you can never be sure what the true probabilities are, you can
    at least find their most likely ranges." However, knowing the ratio of
    the final scores is not enough. In high- ​scoring basketball, for instance, it's unlikely that one team will score twice as many points as
    their opponents unless they are vastly superior. In football, by contrast,
    it's not unusual for the better team to lose 2-1 by a stroke of bad
    luck. To make accurate inferences, you need to know the rules of the game.

    Much as sports teams compete to score points, so groups of closely
    related cells -- known as clones -- compete within tumours for the
    space and resources they need to survive and multiply. Oncologists use
    genetic sequencing to determine the relative sizes of these clones when
    a patient comes to the clinic. If one clone is larger than another then
    it might be because its cells have so-​called "driver" mutations
    that cause them to proliferate faster.

    But the effect of mutations on tumour development depends on how cells
    interact with one another, which is governed by the tumour's spatial
    structure. Much as coronavirus spreads more slowly when people stay home
    and avoid mixing, so driver mutations spread more slowly within tumours
    if cells are confined to small patches, with only rare movement between patches. The rules matter in this game, too.

    Dr Noble says that discoveries revealed in the recent research paper
    "have important implications for interpreting cancer genetic data."
    A major goal of modern cancer research is to characterise the evolutionary process within tumours. We have shown that to get an accurate picture
    of what's going on, you need to account for each tumour's particular
    spatial structure.

    By mechanistically connecting tumour architecture to the mode of tumour evolution, our work provides the blueprint for a new generation of
    patient- ​specific models for forecasting tumour progression and
    for optimising therapy.

    ========================================================================== Story Source: Materials provided by City_University_London. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Robert Noble, Dominik Burri, Ce'cile Le Sueur, Jeanne Lemant,
    Yannick
    Viossat, Jakob Nikolas Kather, Niko Beerenwinkel. Spatial structure
    governs the mode of tumour evolution. Nature Ecology & Evolution,
    2021; DOI: 10.1038/s41559-021-01615-9 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/01/220114103018.htm

    --- up 5 weeks, 6 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)