• Oversized and understudied: Researchers

    From ScienceDaily@1:317/3 to All on Wed Mar 9 21:30:48 2022
    Oversized and understudied: Researchers begin to uncover the mysterious
    lives of jumbo bacteriophages

    Date:
    March 9, 2022
    Source:
    Virginia Tech
    Summary:
    Viruses are tiny but mighty intruders that can be found in the
    environment including in human bodies, and they can play a variety
    of roles in ecosystems. Viruses also come in a range of sizes. Some
    are even larger than bacteria, which scientists thought were rare
    cases until recently.



    FULL STORY ========================================================================== Viruses are tiny but mighty intruders that can be found in the environment including in human bodies, and they can play a variety of roles in
    ecosystems.

    Viruses also come in a range of sizes. Some are even larger than bacteria, which scientists thought were rare cases until recently.


    ========================================================================== Among these large viruses are bacterial viruses called jumbo
    bacteriophages.

    Jumbo phages were discovered decades ago, but they have, rather
    paradoxically, mostly escaped further investigation because scientists
    were looking on too small of a scale.

    Alaina Weinheimer, a Ph.D. candidate, and Frank Aylward, an assistant
    professor of biological sciences in Virginia Tech's College of Science
    and an affiliate faculty member in the Center for Emerging, Zoonotic, Arthropod-borne Pathogens within the Fralin Life Sciences Institute,
    are seeking to answer a few big questions about these jumbo viruses. In a recent study, Weinheimer constructed and analyzed the genomes of marine
    jumbo phages, which led to a number of findings about their evolution
    and ecology.

    "We are only beginning to appreciate the diversity and scope of jumbo
    phages in the environment" said Weinheimer, and the first author on
    the paper. "We don't quite understand the impacts of jumbo phages yet,
    and we're just beginning to see that they are quite widespread. This
    study shows that they are found all throughout the ocean, and they don't necessarily all infect the same type of bacteria." Their findings were published in The ISME Journal: Multidisciplinary Journal of Microbial
    Ecology.

    Bacteria are the driving force behind the ocean's nutrient cycles. Despite their position at the bottom of the food chain, bacteria perform vital functions such as photosynthesis and nitrogen fixation, which contribute greatly to the health of marine ecosystems.



    ==========================================================================
    When jumbo bacteriophages infect and kill bacteria, they first seize
    control of the bacteria's metabolism, transforming the bacteria's
    principal functions - - such as photosynthesis and transcription -- into
    the replication of more viruses. To release new viruses, the bacteria
    cell bursts, which also releases the cell's nutrients and organic material
    into the sea. These infections shape nutrient cycles in the ocean.

    For that reason, researchers are determined to understand how phages
    change the composition of marine microbial communities and nutrient cycles
    that bacteria affect. But to study viruses such as these, researchers
    need to work beyond a basic microscopic level.

    Viruses can be incredibly difficult to grow in a lab, so to analyze them, researchers often go out and collect DNA samples from the environment
    called metagenomes. Each metagenomic sample is composed of DNA from many organisms or entities, which means researchers have to isolate and piece together the genomes of viruses themselves.

    From there, the process is like constructing an incomplete puzzle.

    "When we sequence DNA in the environment, we first have to break the DNA
    up into itty bitty pieces," said Weinheimer. "After they are sequenced,
    we put the pieces back together into longer stretches of DNA that
    we think belong to the same genome." Because of their particularly
    complex evolution and genomes, researchers must come up with intricate
    ways to detect jumbo phages and reconstruct their genomes as accurately
    and completely as possible.



    ========================================================================== After some trial and error, Weinheimer and Aylward developed a method that
    will help other researchers better identify and group jumbo bacteriophages
    in metagenomes.

    With this approach, Weinheimer and Aylward were able to successfully
    recover 85 high-quality jumbo phage genomes present in the ocean. They
    then grouped these jumbo phages based on gene content with other known
    jumbo phages and were able to conclude that certain groups of jumbo phages
    are more prevalent in surface waters than deeper waters and vice versa.

    "Traditional methods typically only look at a fragment of jumbo phage
    genomes," said Weinheimer. "But with our approach, we are getting closer
    to full genomes, and so we're able to better our understanding of the
    diversity and biology of these phages." In their study, Weinheimer and
    Aylward also suggest that bacteriophages have different routes of evolving
    such big genomes. While some phages acquire photosynthetic genes to aid
    in infection efficiency, others will pick up genes that are more vital
    for combating their host's defenses.

    This finding backs up the hypothesis that a defense system arms race is
    part of the reason behind the impressive size and variety of bacteriophage genomes.

    But there is more to be done to understand how complexity emerges or
    evolves in the virus world and how they evolve with their hosts. Now
    that Weinheimer and Aylward know where these jumbo phages are more
    prevalent, they can collect samples to potentially even begin to grow
    them in the lab.

    "By targeting and isolating jumbo phages or growing them in the lab,
    we may better understand their biology," said Weinheimer. "A lot of
    jumbo phages have genes with unknown functions, and we are excited to
    see what we will find." Additionally, their methods can be applied to metagenome samples from other environments such as soils and lakes to
    begin to see what roles jumbo phages may have in these ecosystems.


    ========================================================================== Story Source: Materials provided by Virginia_Tech. Original written by
    Kendall Daniels. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Alaina R. Weinheimer, Frank O. Aylward. Infection strategy and
    biogeography distinguish cosmopolitan groups of marine
    jumbo bacteriophages. The ISME Journal, 2022; DOI:
    10.1038/s41396-022-01214-x ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220309104523.htm

    --- up 1 week, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)