• Harnessing AI and Robotics to treat spin

    From ScienceDaily@1:317/3 to All on Mon Mar 7 21:30:48 2022
    Harnessing AI and Robotics to treat spinal cord injuries

    Date:
    March 7, 2022
    Source:
    Rutgers University
    Summary:
    By employing artificial intelligence (AI) and robotics to formulate
    therapeutic proteins, a team has successfully stabilized an enzyme
    able to degrade scar tissue resulting from spinal cord injuries
    and promote tissue regeneration. The study details the team's
    ground-breaking stabilization of the enzyme Chondroitinase ABC,
    (ChABC) offering new hope for patients coping with spinal cord
    injuries.



    FULL STORY ==========================================================================
    By employing artificial intelligence (AI) and robotics to formulate
    therapeutic proteins, a team led by Rutgers researchers has successfully stabilized an enzyme able to degrade scar tissue resulting from spinal
    cord injuries and promote tissue regeneration.


    ==========================================================================
    The study, recently published in Advanced Healthcare Materials,details
    the team's ground-breaking stabilization of the enzyme Chondroitinase ABC, (ChABC) offering new hope for patients coping with spinal cord injuries.

    "This study represents one of the first times artificial intelligence
    and robotics have been used to formulate highly sensitive therapeutic
    proteins and extend their activity by such a large amount. It's a major scientific achievement," said Adam Gormley, the project's principal investigator and an assistant professor of biomedical engineering at
    Rutgers School of Engineering (SOE) at Rutgers University-New Brunswick.

    Gormley expressed that his research is also motivated, in part, by a
    personal connection to spinal cord injury.

    "I'll never forget being at the hospital and learning a close college
    friend would likely never walk again after being paralyzed from the waist
    down after a mountain biking accident," Gormley recalled. "The therapy
    we are developing may someday help people such as my friend lessen the
    scar on their spinal cords and regain function. This is a great reason
    to wake up in the morning and fight to further the science and potential therapy." Shashank Kosuri, a biomedical engineering doctoral student
    at Rutgers SOE and a lead author of the study noted that spinal cord
    injuries, or SCIs, can negatively impact the physical, psychological,
    and socio-economic well-being of patients and their families. Soon after
    an SCI, a secondary cascade of inflammation produces a dense scar tissue
    that can inhibit or prevent nervous tissue regeneration.

    The enzyme successfully stabilized in the study, ChABC, is known to
    degrade scar tissue molecules and promote tissue regeneration, yet it is
    highly unstable at the human body temperature of 98.6DEG F. and loses all activity within a few hours. Kosuri noted that this necessitates multiple, expensive infusions at very high doses to maintain therapeutic efficacy.

    Synthetic copolymers are able to wrap around enzymes such as ChABC and stabilize them in hostile microenvironments. In order to stabilize the
    enzyme, the researchers utilized an AI-driven approach with liquid
    handling robotics to synthesize and test the ability of numerous
    copolymers to stabilize ChABC and maintain its activity at 98.6DEG F.

    While the researchers were able to identify several copolymers that
    performed well, Kosuri reported that one copolymer combination even
    continued to retain 30% of the enzyme for up to one week, a promising
    result for patients seeking care for spinal cord injuries.

    The study received support from grants funded by the National
    Institutes of Health, the National Science Foundation, and The New
    Jersey Commission on Spinal Cord research. In addition to Gormley and
    Kosuri, the Rutgers research team also included SOE Professor Li Cai and Distinguished Professor Martin Yarmush, as well as several SOE-affiliated students. Faculty and students from Princeton University's Department
    of Chemical and Biological Engineering also collaborated on the project.


    ========================================================================== Story Source: Materials provided by Rutgers_University. Original written
    by Emily Everson Layden. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Shashank Kosuri, Carlos H. Borca, Heloise Mugnier, Matthew Tamasi,
    Roshan
    A. Patel, Isabel Perez, Suneel Kumar, Zachary Finkel, Rene Schloss,
    Li Cai, Martin L. Yarmush, Michael A. Webb, Adam J. Gormley.

    Machine‐Assisted Discovery of Chondroitinase ABC Complexes
    toward Sustained Neural Regeneration. Advanced Healthcare Materials,
    2022; 2102101 DOI: 10.1002/adhm.202102101 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220307113045.htm

    --- up 1 week, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)