• Clues to better batteries emerge from tr

    From ScienceDaily@1:317/3 to All on Mon Feb 28 21:30:42 2022
    Clues to better batteries emerge from tracking lithium
    X-ray technique reveals irregularities and dead spots arise due to
    incomplete lithium stripping from anode during battery discharge

    Date:
    February 28, 2022
    Source:
    DOE/Brookhaven National Laboratory
    Summary:
    A new study tracked lithium metal deposition and removal from a
    battery anode while it was cycling to find clues as to how failure
    occurs. The research could help improve the use of pure lithium
    metal in anodes for electric vehicle batteries, which would reduce
    battery weights and dramatically extend driving range.



    FULL STORY ==========================================================================
    Pure lithium metal is a promising replacement for the graphite-based
    anodes currently used in electric vehicle batteries. It could tremendously reduce battery weights and dramatically extend the driving range of
    electric vehicles relative to existing technologies. But before lithium
    metal batteries can be used in cars, scientists must first figure out
    how to extend their lifetimes.


    ==========================================================================
    A new study led by Peter Khalifah -- a chemist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University
    - - tracked lithium metal deposition and removal from a battery anode
    while it was cycling to find clues as to how failure occurs. The work is published in a special issue of the Journal of the Electrochemical Society honoring the contributions of Nobel Prize-winning battery researcher John Goodenough, who like Khalifah is a member of the Battery 500 Consortium research team.

    "In a good battery, the rate of lithium plating (deposition) and stripping (removal) will be the same at all positions on the surface of electrodes," Khalifah said. "Our results show that it's harder to remove lithium at
    certain places, which means there are problems there. By identifying
    the cause of the problems, we can figure out how to get rid of them
    and make better batteries with higher capacities and longer lifetimes." Khalifah and his collaborators conducted the study using intense x-rays at
    the Advanced Photon Source, a DOE Office of Science user facility at DOE's Argonne National Laboratory. They tracked lithium as it shuttled from
    cathode to anode and back during one complete charge and discharge cycle.

    "The x-rays can see right through the battery and allow us to make many measurements very quickly to track what happens as the battery changes," Khalifah said. "To the best of our knowledge, no one has ever been able
    to use x-rays to map lithium shuttling while it happens." One challenge: Lithium atoms are difficult to see using x-rays. The weak signal from the
    small number of lithium atoms that move between the cathode and anode
    can easily get obscured by stronger signals emitted by other materials
    that make up the battery -- including the signal that would come from
    the large amount of lithium on a pure lithium metal anode.



    ==========================================================================
    To address that challenge, Khalifah's team designed a battery cell
    using a "bare" anode -- at least bare with respect to the presence of pre-existing lithium. This makes the signal of the shuttling lithium
    ions easier to measure.

    They then did a study comparing two different anode materials -- copper
    and molybdenum -- on which lithium ions were deposited as pure lithium
    metal after being extracted from the cathode material during operation
    of these batteries.

    This allowed the researchers to follow how uniformly lithium metal was
    added to and removed from anode surfaces. Comparing this process using
    copper and molybdenum anodes also offered an opportunity to identify differences between these two metals that might prove fruitful in
    designing improved batteries.

    Using this setup, the team mapped out how much lithium was present across
    the electrode while the cell was maintained at various stages of charge
    and discharge.

    It took about an hour to collect maps with hundreds of data points. That mapping data could be used to identify changes that had occurred as a
    result of charging and discharging the battery, but the process of data collection was too slow to be useful for following the changes as they occurred. So, to track changes as they happened, the scientists used
    a more rapid data collection procedure to scan a small subset of 10 pixel-specific locations over and over again during battery cycling.

    "We made the maps while the battery was in a resting state, starting
    at zero capacity, then took pixel measurements as we charged to half
    capacity. Then we stopped charging and made another map, then resumed pixel-specific measurements while charging to full capacity. We then
    discharged the cell while continuing to alternate mapping and pixel
    scans, stopping to collect maps at half discharge and full discharge,"
    Khalifah explained.

    Results reveal variations For the copper anode, all the points behaved
    as they should during charging: half the lithium capacity was deposited
    on the anode up to the half-charged state, and all possible lithium was deposited by the full charge state.



    ==========================================================================
    On discharge, large differences developed between pixels. In some pixels,
    the lithium was removed proportional to the discharge (half the lithium
    was stripped by the half discharge state, and all was gone by full
    discharge).

    Other pixels showed a lag in lithium removal, where stripping was slow
    during the first half of discharge, then sped up to complete the process
    by full discharge. In still other spots the lagging was so severe that
    most of the lithium remained on the anode even when the battery had been
    fully discharged.

    "If the lithium is left behind, that reduces the capacity of the cell," Khalifah said. "Each lithium atom left behind means one less electron
    flowing through the external circuit powered by the battery. You
    can't extract all the capacity of the cell." The finding that these irregularities arose due to incomplete stripping of lithium was somewhat surprising. Prior to this study, many scientists had believed that lithium plating was the source of the worst problems in lithium metal batteries.

    "In general, one expects it is more difficult to deposit lithium metal as
    the atoms have to be organized in the specific arrangement of the crystal structure of this metal," Khalifah explained. "Removing lithium should be easier because any atom on the surface can be taken away without having
    to follow any specific pattern. Furthermore, if lithium is added more
    quickly than the atoms can be deposited homogenously across the surface,
    the growth tends to occur in the form of needle-like dendrites that
    can cause electrical shorts (and potentially fires) in the battery."
    The molybdenum anode showed a bit more variation during plating than
    copper, but less variation during stripping.

    "Since the lithium behavior was better during the stripping step that
    caused the most overall irregularities in the anode, it implies that
    batteries using molybdenum foil substrates instead of copper substrates
    might yield higher capacity batteries," Khalifah said.

    However, it is not yet clear if the choice of metal is responsible for
    the better performance of the molybdenum anode. Another factor could be
    the distribution of electrolyte -- the liquid through which the lithium
    ions travel as they shuttle back and forth between anode and cathode.

    The mapping data showed that the regions of poor performance occurred
    in spots that were about five millimeters across. The size and shape
    of those spots and comparisons with other experiments suggest that poor spreading of the liquid electrolyte throughout the battery cell might be responsible for the local loss of capacity in those regions. If this is
    the case, Khalifah said, then the performance of the battery can likely
    be improved by finding a better method for distributing the electrolyte
    across the cathode.

    "Follow-up experiments aimed at distinguishing between metal and solvent effects, and for testing the effectiveness of strategies for mitigating potential problems such as electrolyte inhomogeneity, will help advance
    the broader goal of developing high-capacity lithium metal anode batteries
    with long lifetimes," Khalifah said.

    ========================================================================== Story Source: Materials provided by
    DOE/Brookhaven_National_Laboratory. Note: Content may be edited for
    style and length.


    ========================================================================== Journal Reference:
    1. Monty R. Cosby, Gia M. Carignan, Zhuo Li, Corey M. Efaw, Charles C.

    Dickerson, Liang Yin, Yang Ren, Bin Li, Eric J. Dufek, Peter
    G. Khalifah.

    Operando Synchrotron Studies of Inhomogeneity during Anode-Free
    Plating of Li Metal in Pouch Cell Batteries. Journal of
    The Electrochemical Society, 2022; 169 (2): 020571 DOI:
    10.1149/1945-7111/ac5345 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220228125627.htm

    --- up 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)