• A new, inexpensive catalyst speeds the p

    From ScienceDaily@1:317/3 to All on Fri Feb 25 21:30:42 2022
    A new, inexpensive catalyst speeds the production of oxygen from water
    The material could replace rare metals and lead to more economical
    production of carbon-neutral fuels

    Date:
    February 25, 2022
    Source:
    Massachusetts Institute of Technology
    Summary:
    Researchers have developed a new type of catalyst material,
    called a metal hydroxide-organic framework (MHOF), which is made
    of inexpensive and abundant components. The catalyst speeds up
    the electrochemical reaction that splits apart water molecules
    to produce oxygen, which is at the heart of multiple approaches
    aiming to produce alternative fuels for transportation.



    FULL STORY ==========================================================================
    An electrochemical reaction that splits apart water molecules to
    produce oxygen is at the heart of multiple approaches aiming to produce alternative fuels for transportation. But this reaction has to be
    facilitated by a catalyst material, and today's versions require the use
    of rare and expensive elements such as iridium, limiting the potential
    of such fuel production.


    ==========================================================================
    Now, researchers at MIT and elsewhere have developed an entirely new type
    of catalyst material, called a metal hydroxide-organic framework (MHOF),
    which is made of inexpensive and abundant components. The family of
    materials allows engineers to precisely tune the catalyst's structure and composition to the needs of a particular chemical process, and it can then match or exceed the performance of conventional, more expensive catalysts.

    The findings are described in the journal Nature Materials, in a paper
    by MIT postdoc Shuai Yuan, graduate student Jiayu Peng, Professor Yang Shao-Horn, Professor Yuriy Roma'n-Leshkov, and nine others.

    Oxygen evolution reactions are one of the reactions common to the electrochemical production of fuels, chemicals, and materials. These
    processes include the generation of hydrogen as a byproduct of the oxygen evolution, which can be used directly as a fuel or undergo chemical
    reactions to produce other transportation fuels; the manufacture of
    ammonia, for use as a fertilizer or chemical feedstock; and carbon
    dioxide reduction in order to control emissions.

    But without help, "These reactions are sluggish," Shao-Horn says. "For a reaction with slow kinetics, you have to sacrifice voltage or energy to
    promote the reaction rate." Because of the extra energy input required,
    "The overall efficiency is low. So that's why people use catalysts,"
    she says, as these materials naturally promote reactions by lowering
    energy input.

    But until now, these catalysts "Aare all relying on expensive materials or
    late transition metals that are very scarce, for example iridium oxide,
    and there has been a big effort in the community to find alternatives
    based on Earth- abundant materials that have the same performance in terms
    of activity and stability," Roma'n-Leshkov says. The team says they have
    found materials that provide exactly that combination of characteristics.



    ========================================================================== Other teams have explored the use of metal hydroxides, such as nickel-iron hydroxides, Roma'n-Leshkov says. But such materials have been difficult
    to tailor to the requirements of specific applications. Now, though, "The reason our work is quite exciting and quite relevant is that we've found a
    way of tailoring the properties by nanostructuring these metal hydroxides
    in a unique way." The team borrowed from research that has been done on
    a related class of compounds known as metal-organic frameworks (MOFs),
    which are a kind of crystalline structure made of metal oxide nodes
    linked together with organic linker molecules. By replacing the metal
    oxide in such materials with certain metal hydroxides, the team found,
    it became possible to create precisely tunable materials that also had
    the necessary stability to be potentially useful as catalysts.

    "You put these chains of these organic linkers next to each other,
    and they actually direct the formation of metal hydroxide sheets that
    are interconnected with these organic linkers, which are then stacked,
    and have a higher stability," Roma'n-Leshkov says. This has multiple
    benefits, he says, by allowing a precise control over the nanostructured patterning, allowing precise control of the electronic properties of the
    metal, and also providing greater stability, enabling them to stand up
    to long periods of use.

    In testing such materials, the researchers found the catalysts'
    performance to be "surprising," Shao-Horn says. "It is comparable to
    that of the state-of-the- art oxide materials catalyzing for the oxygen evolution reaction." Being composed largely of nickel and iron, these materials should be at least 100 times cheaper than existing catalysts,
    they say, although the team has not yet done a full economic analysis.

    This family of materials "really offers a new space to tune the active
    sites for catalyzing water splitting to produce hydrogen with reduced
    energy input," Shao-Horn says, to meet the exact needs of any given
    chemical process where such catalysts are needed.

    The materials can provide "five times greater tunability" than existing
    nickel- based catalysts, Peng says, simply by substituting different
    metals in place of nickel in the compound. "This would potentially offer
    many relevant avenues for future discoveries." The materials can also
    be produced in extremely thin sheets, which could then be coated onto
    another material, further reducing the material costs of such systems.

    So far, the materials have been tested in small-scale laboratory test
    devices, and the team is now addressing the issues of trying to scale
    up the process to commercially relevant scales, which could still take
    a few years. But the idea has great potential, Shao-Horn says, to help
    catalyze the production of clean, emissions-free hydrogen fuel, so that
    "we can bring down the cost of hydrogen from this process while not being constrained by the availability of precious metals. This is important,
    because we need hydrogen production technologies that can scale."
    The research team included others at MIT, Stockholm University in Sweden,
    SLAC National Accelerator Laboratory, and Institute of Ion Beam Physics
    and Materials Research in Dresden, Germany. The work was supported by
    the Toyota Research Institute.

    ========================================================================== Story Source: Materials provided by
    Massachusetts_Institute_of_Technology. Original written by David
    L. Chandler. Note: Content may be edited for style and length.


    ========================================================================== Related Multimedia:
    * Illustration_depicts_an_electrochemical_reaction,_splitting_water
    molecules ========================================================================== Journal Reference:
    1. Shuai Yuan, Jiayu Peng, Bin Cai, Zhehao Huang, Angel
    T. Garcia-Esparza,
    Dimosthenis Sokaras, Yirui Zhang, Livia Giordano, Karthik Akkiraju,
    Yun Guang Zhu, Rene' Hu"bner, Xiaodong Zou, Yuriy Roma'n-Leshkov,
    Yang Shao- Horn. Tunable metal hydroxide-organic frameworks
    for catalysing oxygen evolution. Nature Materials, 2022; DOI:
    10.1038/s41563-022-01199-0 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220225135649.htm

    --- up 11 weeks, 6 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)