• Chemical synthesis yields potential anti

    From ScienceDaily@1:317/3 to All on Thu Feb 24 21:30:40 2022
    Chemical synthesis yields potential antibiotic

    Date:
    February 24, 2022
    Source:
    Massachusetts Institute of Technology
    Summary:
    Chemists developed a new way to synthesize himastatin, a natural
    compound that has shown potential as an antibiotic. A new strategy
    for producing a natural compound could also be used to generate
    variants with even stronger antimicrobial activity.



    FULL STORY ========================================================================== Chemists at MIT have developed a novel way to synthesize himastatin,
    a natural compound that has shown potential as an antibiotic.


    ========================================================================== Using their new synthesis, the researchers were able not only to produce himastatin but also to generate variants of the molecule, some of
    which also showed antimicrobial activity. They also discovered that the compound appears to kill bacteria by disrupting their cell membranes. The researchers now hope to design other molecules that could have even
    stronger antibiotic activity.

    "What we want to do right now is learn the molecular details about how
    it works, so we can design structural motifs that could better support
    that mechanism of action. A lot of our effort right now is to learn
    more about the physicochemical properties of this molecule and how it
    interacts with the membrane," says Mohammad Movassaghi, an MIT professor
    of chemistry and one of the senior authors of the study.

    Brad Pentelute, an MIT professor of chemistry, is also a senior author
    of the study, which appears today in Science. MIT graduate student Kyan D'Angelo is the lead author of the study, and graduate student Carly
    Schissel is also an author.

    Mimicking nature Himastatin, which is produced by a species of soil
    bacteria, was first discovered in the 1990s. In animal studies, it was
    found to have anticancer activity, but the required doses had toxic
    side effects. The compound also showed potential antimicrobial activity,
    but that potential hasn't been explored in detail, Movassaghi says.



    ========================================================================== Himastatin is a complex molecule that consists of two identical subunits,
    known as monomers, that join together to form a dimer. The two subunits
    are hooked together by a bond that connect a six-carbon ring in one of
    the monomers to the identical ring in the other monomer.

    This carbon-carbon bond is critical for the molecule's antimicrobial
    activity.

    In previous efforts to synthesize himastatin, researchers have tried
    to make that bond first, using two simple subunits, and then added more
    complex chemical groups onto the monomers.

    The MIT team took a different approach, inspired by the way this reaction
    is performed in bacteria that produce himastatin. Those bacteria have
    an enzyme that can join the two monomers as the very last step of the synthesis, by turning each of the carbon atoms that need to be joined
    together into highly reactive radicals.

    To mimic that process, the researchers first built complex monomers
    from amino acid building blocks, helped by a rapid peptide synthesis
    technology previously developed by Pentelute's lab.

    "By using solid-phase peptide synthesis, we could fast-forward through
    many synthetic steps and mix-and-match building blocks easily,"
    D'Angelo says.

    "That's just one of the ways that our collaboration with the Pentelute
    Lab was very helpful." The researchers then used a new dimerization
    strategy developed in the Movassaghi lab to connect two complex molecules together. This new dimerization is based on the oxidation of aniline to
    form carbon radicals in each molecule.

    These radicals can react to form the carbon-carbon bond that hooks the
    two monomers together. Using this approach, the researchers can create
    dimers that contain different types of subunits, in addition to naturally occurring himastatin dimers.



    ==========================================================================
    "The reason we got excited about this type of dimerization is because it
    allows you to really diversify the structure and access other potential derivatives very quickly," Movassaghi says.

    Membrane disruption One of the variants that the researchers created has
    a fluorescent tag, which they used to visualize how himastatin interacts
    with bacterial cells. Using these fluorescent probes, the researchers
    found that the drug accumulates in the bacterial cell membranes. This
    led them to hypothesize that it works by disrupting the cell membrane,
    which is also a mechanism used by at least one FDA-approved antibiotic, daptomycin.

    The researchers also designed several other himastatin variants by
    swapping in different atoms in specific parts of the molecule, and
    tested their antimicrobial activity against six bacterial strains. They
    found that some of these compounds had strong activity, but only if
    they included one naturally occurring monomer along with one that was different.

    "By bringing two complete halves of the molecule together, we could make
    a himastatin derivative with only a single fluorescent label. Only with
    this version could we do microscopy studies that offered evidence of himastatin's localization within bacterial membranes, because symmetric versions with two labels did not have the right activity," D'Angelo says.

    The researchers now plan to design more variants that they hope might
    have more potent antibiotic activity.

    "We've already identified positions that we can derivatize that could potentially either retain or enhance the activity. What's really exciting
    to us is that a significant number of the derivatives that we accessed
    through this design process retain their antimicrobial activity,"
    Movassaghi says.

    The research was funded by the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and a National
    Science Foundation graduate research fellowship.

    ========================================================================== Story Source: Materials provided by
    Massachusetts_Institute_of_Technology. Original written by Anne
    Trafton. Note: Content may be edited for style and length.


    ========================================================================== Related Multimedia:
    * Molecular_structure_of_himastatin ========================================================================== Journal Reference:
    1. Kyan A. D'Angelo, Carly K. Schissel, Bradley L. Pentelute, Mohammad
    Movassaghi. Total synthesis of himastatin. Science, 2022; 375
    (6583): 894 DOI: 10.1126/science.abm6509 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220224140844.htm

    --- up 11 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)