• First-of-its-kind live imaging leads to

    From ScienceDaily@1:317/3 to All on Tue Feb 22 21:31:34 2022
    First-of-its-kind live imaging leads to major discovery in how cells
    pattern in tissues
    Movies in real time show cells of developing fruit fly eye move into
    position

    Date:
    February 22, 2022
    Source:
    Northwestern University
    Summary:
    The ability of cells to self-organize into specific patterns in
    tissues that serve a function is a universal feature of life. A
    well-known and much studied pattern is the compound eye of the
    fruit fly. Researchers now have discovered that the formation of
    the pattern involves mechanical forces, not just chemical signals
    transmitted between cells. Using first- of-its-kind live imaging,
    the researchers saw cells moving into position as the eye develops;
    the cells are not static as previously believed.



    FULL STORY ==========================================================================
    The ability of cells to self-organize into specific patterns in tissues
    that serve a function is a universal feature of life. The stripes of a
    zebra, our eyelashes, the spiral of seeds in a sunflower and the maze
    patterns of snakeskins are just a few examples.


    ========================================================================== Another well-known and much studied pattern is the compound eye of
    the fruit fly. This eye is a highly patterned hexagonal lattice of 800
    clusters of photoreceptor cells. How does an amorphous blob of cells
    develop into this precise and familiar pattern? Northwestern University researchers have discovered that the formation of the pattern involves mechanical forces, not just chemical signals transmitted between
    cells.Using first-of-its-kind live imaging, the researchers saw cells
    moving into position as the eye develops; the cells are not static as previously believed. This major discovery provides principles that should extend to other pattern systems.

    "There is a constellation of patterns everywhere you look," said Richard Carthew, professor of molecular biosciences in the Weinberg College
    of Arts and Sciences. "But there is no master artist. In this study we
    are trying to understand how one pattern -- a pattern of great beauty
    -- forms itself in the body.To our surprise, we found the cells are
    pushed and pulled into position with certain rules, like a chess game."
    The study will be published Feb. 22 in the online life sciences and
    biomedicine journal eLife.

    Carthew and Madhav Mani, assistant professor of engineering sciences
    and applied mathematics at the McCormick School of Engineering, are co- corresponding authors of the paper. Kevin Gallagher, a Ph.D. student
    in molecular biosciences and a member of Carthew's lab, is the paper's
    first author.



    ========================================================================== "This work helps us better understand how life builds itself," said Mani,
    a quantitative biologist. "The process is still mysterious. We study
    the fruit fly eye because it is a model system and has been leveraged
    to teach us a lot.

    There are amazing engineering principles to learn from life. We
    approached this study with an open mind and have learned something
    new about self-assembly." "With our custom-built tools, we were able
    to see something no one else has seen before -- a dynamic view of eye development," said Gallagher, also a quantitative biologist. "That the
    cells were moving location was a complete surprise. What we saw didn't add
    up to the historical paradigm. It's pretty crazy." The multidisciplinary
    team used cutting-edge techniques developed by Gallagher to live-image
    and analyze the dynamics of the eye's self-assembly. The researchers
    identified the novel mechanical dynamics that, in concert with the
    genetic and biochemical molecules, orchestrate the remarkable feat of bioengineering that the fly achieves.They also demonstrated that without
    the correct mechanical forces, the eye does not self-assemble properly.

    In addition to the live imaging, in which the eye was kept alive outside
    the fly's body, the success of the study depended on a computational tool Gallagher built to identify and track every single cell. This enabled the researchers to see where each cell goes over a period of 10 hours.Within
    a narrow zone, called the wavefront of patterning, there is a little
    cascade of cells where cells are pushed, then stop and push other cells
    into the right position, with the familiar hexagonal lattice emerging.

    "Scientists have tried for 50 years to visualize the developing eye,"
    said Carthew, an experimental biologist who has long studied fruit fly
    eyes. "It's only by watching a movie in real time that you can understand
    what occurs.

    Kevin is the first person to achieve this." The research findings could
    be used in bioengineering to make synthetic visual sensors, Carthew said,
    in addition to helping scientists better understand how patterns form
    in nature.

    "If we ever hope to get to a point of being able to do 'true'
    bioengineering, as we engineer with inert matter, then understanding
    the connection between the mechanical and chemical principles in play
    is a must," Mani said.

    The research was supported by the National Institutes of Health (grant R35GM118144), the National Science Foundation (grant 1764421) and the
    Simons Foundation (grant 597491).

    ========================================================================== Story Source: Materials provided by Northwestern_University. Original
    written by Megan Fellman. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. Kevin D Gallagher, Madhav Mani, Richard W Carthew. Emergence of a
    geometric pattern of cell fates from tissue-scale mechanics in
    the Drosophila eye. eLife, 2022; 11 DOI: 10.7554/eLife.72806 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220222125055.htm

    --- up 11 weeks, 3 days, 7 hours, 14 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)