• Size matters in particle treatments of t

    From ScienceDaily@1:317/3 to All on Thu Feb 17 21:30:44 2022
    Size matters in particle treatments of traumatic injuries
    A new analysis offers guidance on the size of nanoparticles that could be
    most effective at stopping internal bleeding

    Date:
    February 17, 2022
    Source:
    Massachusetts Institute of Technology
    Summary:
    Chemical engineers tested how different-sized polymer nanoparticles
    circulate in the body and interact with platelets, the cells that
    promote blood clotting. Such particles could be used to help stop
    internal bleeding after traumatic injuries.



    FULL STORY ========================================================================== Traumatic injuries are the leading cause of death in the U.S. among
    people 45 and under, and such injuries account for more than 3 million
    deaths per year worldwide. To reduce the death toll of such injuries,
    many researchers are working on injectable nanoparticles that can home
    in on the site of an internal injury and attract cells that help to stop
    the bleeding until the patient can reach a hospital for further treatment.


    ========================================================================== While some of these particles have shown promise in animal studies, none
    have been tested in human patients yet. One reason for that is a lack of information regarding the mechanism of action and potential safety of such particles. To shed more light on those factors, MIT chemical engineers
    have now performed the first systematic study of how different-sized
    polymer nanoparticles circulate in the body and interact with platelets,
    the cells that promote blood clotting.

    In a study of rats, the researchers showed that particles in an
    intermediate size range, around 150 nanometers in diameter, were the
    most effective at stopping bleeding. These particles also were much less
    likely to travel to the lungs or other off-target sites, which larger
    particles often do.

    "With nano systems, there is always some accumulation in the liver and
    the spleen, but we'd like more of the active system to accumulate at the
    wound than at these filtration sites in the body," says Paula Hammond, an
    MIT Institute Professor, head of the Department of Chemical Engineering,
    and a member of MIT's Koch Institute for Integrative Cancer Research.

    Hammond; Bradley Olsen, the Alexander and I. Michael Kasser Professor
    of Chemical Engineering; and George Velmahos, a professor of surgery
    at Harvard Medical School and chief of trauma, emergency surgery, and
    surgical critical care at Massachusetts General Hospital, are the senior authors of the study.

    MIT graduate student Celestine Hong is the lead author of the paper,
    which appears in the journal ACS Nano.



    ==========================================================================
    Size effects Nanoparticles that can stop bleeding, also called hemostatic nanoparticles, can be made in a variety of ways. One of the most commonly
    used strategies is to create nanoparticles made of a biocompatible
    polymer conjugated with a protein or peptide that attracts platelets,
    the blood cells that initiate blood clotting.

    In this study, the researchers used a polymer known as PEG-PLGA,
    conjugated with a peptide called GRGDS, to make their particles. Most of
    the previous studies of polymeric particles to stop bleeding have focused
    on particles ranging in size from 300 to 500 nanometers. However, few,
    if any studies have systematically analyzed how size affects the function
    of the nanoparticles.

    "We were really trying to look at how the size of the nanoparticle
    affects its interactions with the wound, which is an area that hasn't
    been explored with the polymer nanoparticles used as hemostats before,"
    Hong says.

    Studies in animals have shown that larger nanoparticles can help to stop bleeding, but those particles also tend to accumulate in the lungs, which
    can cause unwanted clotting there. In the new study, the MIT team analyzed
    a range of nanoparticles, including small (less than 100 nanometers), intermediate (140 to 220 nanometers), and large (500 to 650 nanometers).



    ========================================================================== First, they analyzed the particles in the lab, to study how they interact
    with active platelets under a variety of conditions. One of their tests measured how well the particles bound to platelets as the platelets
    flowed through a tube.

    In this test, the smallest nanoparticles resulted in the greatest
    percentage of bound platelets. In another test, they measured how well nanoparticles could stick to a surface coated in platelets. In this
    scenario, the largest nanoparticles stuck the best.

    Then, the researchers asked a slightly different question and analyzed
    how much of the mass stuck to the surface was nanoparticles and how much
    was platelets, because the ultimate goal is to attract as many platelets
    as possible. Using that benchmark, they found that the intermediate
    particles were the most effective.

    "If you attract a bunch of nanoparticles and they end up blocking platelet binding because they clump onto each other, that is not very useful. We
    want platelets to come in," Hong says. "When we did that experiment, we
    found that the intermediate particle size was the one that ended up with
    the greatest platelet content." Stopping the bleeding The researchers
    then tested the three size classes of nanoparticles in mice.

    First, they injected the particles in healthy mice to study how long
    they would circulate in the body and where they would accumulate. They
    found that, as seen in prior studies, the largest particles were more
    likely to accumulate in the lungs or other off-target sites, and their circulation time was shorter.

    Working with their collaborators at MGH, the researchers then used a
    rat model of internal injury to study which particles would be most
    effective at stopping bleeding. They found that the intermediate-sized particles appeared to work the best, and that those particles also showed
    the greatest accumulation rate at the wound site.

    "This study suggests that the bigger nanoparticles are not necessarily
    the system that we want to focus on, and I think that was not clear from
    the previous work. Being able to turn our attention to this medium-size
    range can open up some new doors," Hammond says.

    The researchers now hope to test these intermediate-sized particles in
    larger animal models, to get more information on their safety and the
    most effective doses. They hope that eventually, such particles could
    be used as a first line of treatment to stop bleeding from traumatic
    injuries long enough for a patient to reach the hospital.

    "These particles are meant to address preventable deaths. They're not
    a cure- all for internal bleeding, but they're meant to give a person a
    few extra hours until they can get to a hospital where they can receive adequate treatment," Hong says.

    The research was funded by the U.S. Army Research Office through the
    Institute for Soldier Nanotechnologies at MIT, and the Department
    of Defense.

    ========================================================================== Story Source: Materials provided by
    Massachusetts_Institute_of_Technology. Original written by Anne
    Trafton. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Celestine Hong, Osaid Alser, Anthony Gebran, Yanpu He, Wontae Joo,
    Nikolaos Kokoroskos, George Velmahos, Bradley D. Olsen, Paula
    T. Hammond.

    Modulating Nanoparticle Size to Understand Factors Affecting
    Hemostatic Efficacy and Maximize Survival in a Lethal Inferior
    Vena Cava Injury Model. ACS Nano, 2022; DOI: 10.1021/acsnano.1c09108 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220217122347.htm

    --- up 10 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)