• The surprising structural reason your ki

    From ScienceDaily@1:317/3 to All on Thu Feb 17 21:30:42 2022
    The surprising structural reason your kitchen sponge is disgusting


    Date:
    February 17, 2022
    Source:
    Duke University
    Summary:
    Researchers have uncovered a basic but surprising fact: your kitchen
    sponge is a better incubator for diverse bacterial communities than
    a laboratory Petri dish. But it's not just the trapped leftovers
    that make the cornucopia of microbes swarming around so happy and
    productive, it's the structure of the sponge itself.



    FULL STORY ========================================================================== Researchers at Duke University have uncovered a basic but surprising
    fact: your kitchen sponge is a better incubator for diverse bacterial communities than a laboratory Petri dish. But it's not just the trapped leftovers that make the cornucopia of microbes swarming around so happy
    and productive, it's the structure of the sponge itself.


    ==========================================================================
    In a series of experiments, the scientists show how various microbial
    species can affect one another's population dynamics depending on
    factors of their structural environment such as complexity and size. Some bacteria thrive in a diverse community while others prefer a solitary existence. And a physical environment that allows both kinds to live
    their best lives leads to the strongest levels of biodiversity.

    Soil provides this sort of optimal mixed-housing environment, and so
    does your kitchen sponge.

    The Duke biomedical engineers say their results suggest that structural environments should be taken into account by industries that use bacteria
    to accomplish tasks such as cleaning up pollution or producing commercial products.

    The results appeared online February 9 in the journal Nature Chemical
    Biology.

    Bacteria are just like people living through the pandemic -- some find
    it difficult being isolated while others thrive," said Lingchong You,
    professor of biomedical engineering at Duke. "We've demonstrated that in a complex community that has both positive and negative interactions between species, there is an intermediate amount of integration that will maximize
    its overall coexistence." Microbial communities mix in varying degrees throughout nature. Soil provides many nooks and crannies for different populations to grow without much interaction from their neighbors. The
    same can be said for individual droplets of water on the tops of leaves.



    ==========================================================================
    But when humans throw many bacterial species together into a structureless
    goop to produce commodities like alcohol, biofuel and medications, it's
    usually on a plate or even a big vat. In their experiments, You and his laboratory show why these industrial efforts may be wise to begin taking
    a structural approach to their manufacturing efforts.

    The researchers barcoded about 80 different strains of E. coli so that
    they could track their population growth. Then they mixed the bacteria
    in various combinations on laboratory growth plates with a wide variety
    of potential living spaces ranging from six large wells to 1,536 tiny
    wells. The large wells approximated environments in which microbial
    species can mix freely, while the small wells mimicked spaces where
    species could keep to themselves.

    Regardless of the habitat sizes, the results were the same. The small
    wells that began with a handful of species wound up evolving into a
    community with only one or two strains surviving. Similarly, the large
    wells that began with a broad range of biodiversity also ended the
    experiment with only one or two species remaining.

    "The small portioning really hurt the species that depend on interactions
    with other species to survive, while the large portioning eliminated
    the members that suffer from these interactions (the loners)," You
    said. "But the intermediate portioning allowed a maximum diversity of
    survivors in the microbial community." The results, You says, create
    a framework for researchers working with diverse bacterial communities
    to begin testing what structural environments might work best for their pursuits. They also point toward why a kitchen sponge is such a useful
    habitat for microbes. It mimics the different degrees of separation found
    in healthy soil, providing different layers of separation combined with different sizes of communal spaces.

    To prove this point, the researchers also ran their experiment with
    a strip of regular household sponge. The results showed that it's an
    even better incubator of microbial diversity than any of the laboratory equipment they tested.

    "As it turns out, a sponge is a very simple way to implement multilevel portioning to enhance the overall microbial community," You said. "Maybe
    that's why it's a really dirty thing -- the structure of a sponge just
    makes a perfect home for microbes." This research was supported by the National Institutes of Health (R01GM098642, R01GM110494), the National
    Science Foundation (MCB-1412459, MCB-1937259; DEB 1257882), the Office
    of Naval Research (N00014-12-1-0631) and the Army Research Office (W911NF-14-1-0490).

    ========================================================================== Story Source: Materials provided by Duke_University. Original written
    by Ken Kingery. Note: Content may be edited for style and length.


    ========================================================================== Related Multimedia:
    * Glowing_growing_bacteria ========================================================================== Journal Reference:
    1. Feilun Wu, Yuanchi Ha, Andrea Weiss, Meidi Wang, Jeffrey Letourneau,
    Shangying Wang, Nan Luo, Shuquan Huang, Charlotte T. Lee,
    Lawrence A.

    David, Lingchong You. Modulation of microbial community dynamics
    by spatial partitioning. Nature Chemical Biology, 2022; DOI:
    10.1038/s41589- 021-00961-w ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220217122349.htm

    --- up 10 weeks, 5 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)