• How plants evolved to colonize land over

    From ScienceDaily@1:317/3 to All on Wed Feb 16 21:30:52 2022
    How plants evolved to colonize land over 500-million years ago
    Analysis of one of the largest genomic datasets of plants reveals how
    they colonized land millions of years ago

    Date:
    February 16, 2022
    Source:
    University of Bristol
    Summary:
    Scientists analyzing one of the largest genomic datasets of plants
    have discovered how the first plants on Earth evolved the mechanisms
    used to control water and 'breathe' on land hundreds of millions
    of years ago.

    The study has important implications in understanding how plant
    water transport systems have evolved and how these might adapt in
    future in response to climate change.



    FULL STORY ========================================================================== Scientists analysing one of the largest genomic datasets of plants have discovered how the first plants on Earth evolved the mechanisms used
    to control water and 'breathe' on land hundreds of millions of years
    ago. The study by the University of Bristol and University of Essex,
    published in New Phytologist, has important implications in understanding
    how plant water transport systems have evolved and how these might adapt
    in future in response to climate change.


    ==========================================================================
    Over the last 500-million years, the evolution of land plants
    has supported the diversity of life on an increasingly green
    planet. Throughout their evolution, plants have acquired adaptations
    such as leaves and roots, allowing them to control water and colonise
    land. Some of these 'tools' evolved in early land plants and today are
    found in both tiny mosses and giant trees which form complex forest
    ecosystems.

    Researchers from Essex's School of Life Sciences, and Bristol's Schools
    of Biological Sciences and Geographical Sciences first compared the genes
    of 532 plant species to investigate the role of new and old genes in the genesis of these adaptations. Of these, the team focused on 218 genes
    which were genes related to major innovations in land plant evolution
    such as roots and vascular tissues.

    They discovered that some early traits essential for land plants, like
    stomata (pores that plants use to 'breathe'), are related to the origin
    of new genes.

    In contrast, later innovations (e.g. roots, the vascular system) recycle
    old genes that emerged in the ancestors of land plants and showed that different parts of plant anatomies (stomata, vascular tissue, roots)
    involved in the transport of water were linked to different methods of
    gene evolution.

    Dr Jordi Paps, joint lead author and Senior Lecturer from Bristol's
    School of Biological Sciences, explained: "Our analyses shed new light
    on the genetic basis of the greening of the planet, highlighting the
    different methods of gene evolution in the diversification of the plant kingdom. Historically it has not been clear if evolutionary innovations
    are driven by the emergence of new genes or by the repurposing of old
    ones. Our findings tell us how plants have evolved at distinct moments
    in their history and how different modes of evolution, the origin of new
    genes and the recycling of older ones, contributed to the emergence of
    major innovations key to the greening of the planet.

    Dr Ulrike Bechtold, joint lead author and Senior Lecturer from Essex's
    School of Life Sciences explains that this study "provides insights into
    the mechanistic changes underpinning water uptake and transport, which
    are important for plant health and productivity. It allows researchers to select and investigate the function of old, repurposed, and new genes in
    the lab, with the aim to select genes that reduce water use and improve
    drought resilience in crop plants" Dr Alexander Bowles from Bristol's
    School of Geographical Sciences, one of the study's co-authors, added:
    "As well as helping us make sense of the past, this work is important for
    the future. By understanding how water transport systems have evolved,
    we can begin to understand the limiting factors for plant growth.

    This has particular importance when considering the
    growth of crops as well as their resilience to drought." ========================================================================== Story Source: Materials provided by University_of_Bristol. Note: Content
    may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Alexander M. C. Bowles, Jordi Paps, Ulrike
    Bechtold. Water‐related
    innovations in land plants evolved by different patterns of gene
    cooption and novelty. New Phytologist, 2022; DOI: 10.1111/nph.17981 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220216130328.htm

    --- up 10 weeks, 4 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)