• What lies beneath: Roots as drivers of S

    From ScienceDaily@1:317/3 to All on Mon Feb 14 21:30:48 2022
    What lies beneath: Roots as drivers of South African landscape pattern


    Date:
    February 14, 2022
    Source:
    Santa Fe Institute
    Summary:
    Research findings suggest that alternative stable states can
    be maintained through biotic mechanisms, such as root traits,
    in addition to the commonly understood abiotic factors like
    climate. This insight is critical to conserving threatened
    ecosystems around the world.



    FULL STORY ==========================================================================
    We typically think of plants strutting their best stuff aboveground:
    showy flowers, fragrant blossoms, and unique shapes abound. But their development belowground is equally magical.


    ==========================================================================
    "For the last 400 million years, since plants colonized land, roots
    have been the true engine of terrestrial nutrient cycling," marvels SFI
    Omidyar Fellow Mingzhen Lu, the lead author of a new study published in Proceedings of the National Academy of Sciences. "Roots are the foundation
    of biodiversity." In the study,Lu and his team of international
    collaborators, which included scientists William Bond (University of
    Cape Town) and Lars Hedin (Princeton University), dug deep to better
    understand one of the most extraordinary root systems in the world.

    The researchers conducted a four-year manipulated experiment to explore
    the stark divide between the Fynbos and Afrotemperate Forest biomes in
    South Africa's western cape. Fynbos, a shrubby biome with tremendous
    plant diversity, abuts Afrotemperate Forest, a woodland dominated by a
    small number of tree species. The unusual biome boundary is so narrow
    that within a few steps, one passes from a hot, open shrubland into the
    cool, mossy shade of the forest.

    The sharp delineation is made even more distinct because the two biomes
    share an underlying geology and are subject to the same climatic
    patterns -- they exist as alternative stable states. In the face of
    extreme disturbance, the biomes could potentially shift to reflect the neighboring plant communities.

    "Some systems can exist in different states -- like water and ice,"
    explains Hedin. "This makes them especially interesting as models
    for dramatic change because they can switch from one state to another,
    which is especially urgent in a world being stressed by climate change."
    Under this backdrop, the study revealed two significant findings. First,
    Fynbos and Afrotemperate forests exhibited marked differences in their
    root traits.

    Second, these root differences allow the Fynbos plant community to
    deter trees by limiting belowground nutrient availability. Specifically,
    Fynbos plants rebuff invasion with the thinnest roots ever identified.



    ==========================================================================
    "We found that across the world's ecosystems, these roots are the
    thinnest of all," says Lu. "For every 1 gram of carbon -- the weight of
    a paperclip - - these plants produce roots 15 football fields long."
    The stringy roots allow Fynbos species to outcompete thicker-rooted
    plants in nutrient-poor soils.

    "The thin roots of Fynbos are the belowground weapon creating miserable conditions for nutrient-demanding forest plants," says Bond. "We now
    see that it is not the intrinsic soil properties, but plant feedbacks
    to the soil, that create misery for forest saplings." Compounding the "nutritional misery," as the authors describe it, the Fynbos biome
    is prone to frequent, hot fires that combust accumulated nutrients in
    the soil. The nutrient-hoarding belowground strategy combined with a
    collective fire-adaptation allows the Fynbos plant community to favor
    its own persistence by modifying its environment. On the other side of
    the biome divide, the forest is doing the same thing.

    The findings suggest that alternative stable states can be maintained
    through biotic mechanisms, such as root traits, in addition to the
    commonly understood abiotic factors like climate. This insight is critical
    to conserving threatened ecosystems around the world.

    "It is profound to see microscale plant traits, like root thickness,
    linked to macroscale emergent ecosystem patterns," says Lu.

    "Who would have thought it was the roots that help
    explain this bi-stability?" asks Hedin. "It blows my mind." ========================================================================== Story Source: Materials provided by Santa_Fe_Institute. Note: Content
    may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Mingzhen Lu, William J. Bond, Efrat Sheffer, Michael D. Cramer,
    Adam G.

    West, Nicky Allsopp, Edmund C. February, Samson Chimphango, Zeqing
    Ma, Jasper A. Slingsby, Lars O. Hedin. Biome boundary maintained by
    intense belowground resource competition in world's thinnest-rooted
    plant community. Proceedings of the National Academy of Sciences,
    2022; 119 (9): e2117514119 DOI: 10.1073/pnas.2117514119 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/02/220214154848.htm

    --- up 10 weeks, 2 days, 7 hours, 13 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)